Abstract 205P
Background
An accurate diagnosis at an early disease stage is crucial to improve prognosis and management of patients with lung cancer. Exhaled breath analysis by electronic nose (eNose) may aid for this purpose. We aimed to (1) validate the eNose model for detection of lung cancer in COPD patients developed by De Vries et al. (sensitivity 86%, specificity 89%, ROC-AUC of 0.90) (CHEST, 2023) at a 86% and 95% sensitivity level, and (2) develop a new eNose model able to identify lung cancer at a 95% sensitivity level in a more general population of individuals suspected of having lung cancer.
Methods
We performed a prospective observational multi-center study in 318 adult individuals who were suspected of having lung cancer and were referred to thoracic oncology outpatient clinics for further diagnosis (final diagnosis: benign n=105, lung cancer n=213). Breath profiles were collected using a cloud-connected eNose (SpiroNose®). Firstly, we validated the model developed by De Vries et al. in included individuals with COPD (n=121). Secondly, we developed a new eNose model for all included individuals (training cohort n=212, validation cohort n=106). Data analyses involved signal processing and statistics based on Independent Samples T-test and Linear Discriminant Analysis (LDA) followed by ROC analysis.
Results
The model developed by De Vries et al. achieved a ROC-AUC of 0.93 for detecting lung cancer in COPD patients. Selecting a sensitivity of 86% and 95%, it yielded a specificity of 78% and 74%, respectively. The new eNose model reached a comparable specificity of 71% at a 95% sensitivity level and ROC-AUC of 0.90 in the training cohort. These results were confirmed in the validation cohort with a specificity of 74% at a 95% sensitivity level and ROC-AUC of 0.87. Subanalyses showed no influence of tumour location, size, disease stage, or diagnostics clinic on the ability to detect lung cancer.
Conclusions
eNose analysis of exhaled breath allows for non-invasive, accurate detection and diagnosis of lung cancer irrespective of tumour location, size, disease stage, or diagnostics clinic. Implementation of eNose analysis could help identify those individuals for whom additional diagnostics are necessary.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Radboudumc (Department of Respiratory Diseases) and UMCG (Department of Respiratory Diseases).
Funding
Has not received any funding.
Disclosure
R. De Vries: Financial Interests, Personal, Officer, Chief Executive Officer: Breathomix. All other authors have declared no conflicts of interest.
Resources from the same session
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09
224P - Lung cancer scRNA-seq analyses reveal potential mechanisms causing different efficacy of target therapy and immunotherapy between EGFR 19del and L858R lung adenocarcinoma
Presenter: Hao Wang
Session: Poster session 09