Abstract 205P
Background
An accurate diagnosis at an early disease stage is crucial to improve prognosis and management of patients with lung cancer. Exhaled breath analysis by electronic nose (eNose) may aid for this purpose. We aimed to (1) validate the eNose model for detection of lung cancer in COPD patients developed by De Vries et al. (sensitivity 86%, specificity 89%, ROC-AUC of 0.90) (CHEST, 2023) at a 86% and 95% sensitivity level, and (2) develop a new eNose model able to identify lung cancer at a 95% sensitivity level in a more general population of individuals suspected of having lung cancer.
Methods
We performed a prospective observational multi-center study in 318 adult individuals who were suspected of having lung cancer and were referred to thoracic oncology outpatient clinics for further diagnosis (final diagnosis: benign n=105, lung cancer n=213). Breath profiles were collected using a cloud-connected eNose (SpiroNose®). Firstly, we validated the model developed by De Vries et al. in included individuals with COPD (n=121). Secondly, we developed a new eNose model for all included individuals (training cohort n=212, validation cohort n=106). Data analyses involved signal processing and statistics based on Independent Samples T-test and Linear Discriminant Analysis (LDA) followed by ROC analysis.
Results
The model developed by De Vries et al. achieved a ROC-AUC of 0.93 for detecting lung cancer in COPD patients. Selecting a sensitivity of 86% and 95%, it yielded a specificity of 78% and 74%, respectively. The new eNose model reached a comparable specificity of 71% at a 95% sensitivity level and ROC-AUC of 0.90 in the training cohort. These results were confirmed in the validation cohort with a specificity of 74% at a 95% sensitivity level and ROC-AUC of 0.87. Subanalyses showed no influence of tumour location, size, disease stage, or diagnostics clinic on the ability to detect lung cancer.
Conclusions
eNose analysis of exhaled breath allows for non-invasive, accurate detection and diagnosis of lung cancer irrespective of tumour location, size, disease stage, or diagnostics clinic. Implementation of eNose analysis could help identify those individuals for whom additional diagnostics are necessary.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Radboudumc (Department of Respiratory Diseases) and UMCG (Department of Respiratory Diseases).
Funding
Has not received any funding.
Disclosure
R. De Vries: Financial Interests, Personal, Officer, Chief Executive Officer: Breathomix. All other authors have declared no conflicts of interest.
Resources from the same session
1192P - Optimizing lung cancer screening: Independent verification of an AI/ML computer-aided detection and characterization software as medical device
Presenter: Sylvain Bodard
Session: Poster session 09
1194P - Development of a novel artificial intelligence (AI) algorithm to detect pulmonary nodules on chest radiography
Presenter: Mitsunori Higuchi
Session: Poster session 09
1195P - Whole-body magnetic resonance imaging (WB-MRI) screening in Li Fraumeni syndrome for early cancer diagnosis: The SIGNIFIED project
Presenter: Elena Cojocaru
Session: Poster session 09
1196P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting adjuvant therapy outcomes in ovarian cancer patients
Presenter: Dong Woo Lee
Session: Poster session 09
1197P - Ex vivo basket study reports patient-specific sensitivity to carboplatin versus cisplatin in lung, ovarian and bladder cancer
Presenter: Debbie Robbrecht
Session: Poster session 09
1198P - Analytical validation of an NGS panel-based ecDNA detection device for use as a clinical trial assay for the POTENTIATE clinical study of the novel CHK1 inhibitor, BBI-355
Presenter: Pontis Julien
Session: Poster session 09