Abstract 118P
Background
The MET14 skipping mutation, prevalent in various tumors, notably in non-small cell lung cancer (NSCLC), is strongly associated with specific therapeutic targets. Our study aimed to detect MET14 skipping in pan-solid tumor samples using DNA and RNA next-generation sequencing NGS, evaluating assay sensitivity and specificity and mutation distribution across tumor types and populations.
Methods
8,049 samples were tested for MET14 skipping by DNA and RNA-based NGS in amplicon library constructs (ALC), while 7,676 samples were tested by DNA-based NGS in capture library constructs (CLC), with the analysis focusing on clinically significant mutations.
Results
In patients undergoing concurrent DNA/RNA-based NGS (ALC), 1.64% (132/8049) were positive, with lung cancer (LC) showing the highest rate at 2.12% (119/5618), followed by gastrointestinal tumors at 0.11% (3/2681). Lung sarcomatoid carcinoma had the highest MET14 skipping rate (13.6%; 3/22) among LC subtypes. The detection rates of patients with synchronized testing who tested positive by RNA or DNA-based NGS were 1.46% (123/8409) and 0.43% (36/8409), respectively. The detection rate of DNA-based NGS(CLC) was 0.55% (42/7676). Among simultaneously tested patients, 1.20% (96) of the 8,013 DNA-negative cases showed positive results on RNA testing, possibly due to probe design limitations at the Y1003 locus on the DNA level. Conversely, 9 of 36 DNA-positive cases were RNA-negative, indicating possible false-positive and false-negative problems with DNA detection. DNA NGS-based analysis showed that the splice donor site (SD) had the highest mutation rate at 28.3%. In addition, there was no significant difference in the detection rate of MET14 skipping between different tumor cell contents, sample types (e.g., pleural fluid vs. other tissues), and primary vs. metastatic foci (p>0.05). MET14 skipping was more frequent in patients aged 60 years and older (p<0.05), while there was no significant correlation between gender and detection rate.
Conclusions
RNA-based NGS is more accurate in detecting MET14 skipping mutations, and can directly recognize exons lost after transcription, independent of intronic variants, which effectively improves the accuracy of detection.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
173P - Unveiling a novel EpCAM-CD24+ circulating cells with unidentified origin associated with breast cancer distant metastasis
Presenter: Evgeniya Grigoryeva
Session: Poster session 08
174P - Prognostic value of the immune and metabolic profile in the response to neoadjuvant treatment with ICIs in triple-negative breast cancer patients (TNBC)
Presenter: Lucía Serrano García
Session: Poster session 08
175P - Utility of artificial intelligence (AI) in Ki67 scoring of a breast cancer (BC) patient population
Presenter: Xavier Pichon
Session: Poster session 08
176P - ERBB2 amplifications across sex, race, and cancer types
Presenter: Marc Machaalani
Session: Poster session 08
177P - HER2 testing in multiple solid tumors: Concordance between 3 scoring algorithms
Presenter: Wentao Yang
Session: Poster session 08
178P - PD-L1 expression in ER-low versus triple-negative (TN) advanced breast cancer (aBC), and according to phenotypic evolution from primary to recurrent disease
Presenter: Federica Miglietta
Session: Poster session 08
179P - Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
Presenter: Seong Hwan Park
Session: Poster session 08
181P - Molecular characterization and immune microenvironment analysis of MSI-H patients with or without MMR gene mutations
Presenter: Mengxi Ge
Session: Poster session 08
182P - Multi-modal artificial intelligence outperforms image-based approaches for mutation prediction from H&E tissue images in colorectal cancer
Presenter: Marc Päpper
Session: Poster session 08