Abstract 118P
Background
The MET14 skipping mutation, prevalent in various tumors, notably in non-small cell lung cancer (NSCLC), is strongly associated with specific therapeutic targets. Our study aimed to detect MET14 skipping in pan-solid tumor samples using DNA and RNA next-generation sequencing NGS, evaluating assay sensitivity and specificity and mutation distribution across tumor types and populations.
Methods
8,049 samples were tested for MET14 skipping by DNA and RNA-based NGS in amplicon library constructs (ALC), while 7,676 samples were tested by DNA-based NGS in capture library constructs (CLC), with the analysis focusing on clinically significant mutations.
Results
In patients undergoing concurrent DNA/RNA-based NGS (ALC), 1.64% (132/8049) were positive, with lung cancer (LC) showing the highest rate at 2.12% (119/5618), followed by gastrointestinal tumors at 0.11% (3/2681). Lung sarcomatoid carcinoma had the highest MET14 skipping rate (13.6%; 3/22) among LC subtypes. The detection rates of patients with synchronized testing who tested positive by RNA or DNA-based NGS were 1.46% (123/8409) and 0.43% (36/8409), respectively. The detection rate of DNA-based NGS(CLC) was 0.55% (42/7676). Among simultaneously tested patients, 1.20% (96) of the 8,013 DNA-negative cases showed positive results on RNA testing, possibly due to probe design limitations at the Y1003 locus on the DNA level. Conversely, 9 of 36 DNA-positive cases were RNA-negative, indicating possible false-positive and false-negative problems with DNA detection. DNA NGS-based analysis showed that the splice donor site (SD) had the highest mutation rate at 28.3%. In addition, there was no significant difference in the detection rate of MET14 skipping between different tumor cell contents, sample types (e.g., pleural fluid vs. other tissues), and primary vs. metastatic foci (p>0.05). MET14 skipping was more frequent in patients aged 60 years and older (p<0.05), while there was no significant correlation between gender and detection rate.
Conclusions
RNA-based NGS is more accurate in detecting MET14 skipping mutations, and can directly recognize exons lost after transcription, independent of intronic variants, which effectively improves the accuracy of detection.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08