Abstract 5P
Background
Liquid biopsy serve as a potential alternative to repeat invasive biopsy for tumor genomic profiling in patients with metastatic cancer. Circulating tumor cells (CTCs), as a component of liquid biopsies, could be a source of cancer–specific DNA. With the advent of patient-derived organoid culture approaches, there is the possibility of in vitro expansion of CTCs and these could be employed to examine a range of somatic variants. The current study aimed to establish CTC-derived organoids (CTCDO) from patients with lung adenocarcinoma (LUDC) and explore them for the assessment of EGFR and KRAS mutation status.
Methods
Blood samples were collected from 20 LUDC patients, including 12 (60%) men and 8 (40%) women, 9 smokers (45%), 2 ex-smokers (10%) and 9 non-smokers (45%). CTCs were enriched from 4 mL blood by antibody-based negative depletion. Then, enriched CTC fractions were cultured in vitro (3D) under optimized conditions to expand organoids. Further, we examined the presence of EGFR (exons 19-21) and KRAS (exon 2) mutations in expanded CTCDOs using Sanger sequencing.
Results
Short-term CTC 3D cultures were successfully generated from isolated CTCs in 15 (75%) LUDC patients (passages 2-7), of which 2 (13.3%) were non-metastatic cases. Almost all CTCDOs showed positive staining of TFF1 and negative staining of CD45. EGFR mutation (Exon21-L858R) was detected in seven (46.6%) cases. In one patient harboring L858R mutation, with available paired primary and expanded CTC, this mutation was confirmed in CTCDO. Moreover, KRAS mutation (Exon2-G12D) was identified in 2 (25%) wild-type EGFR cases.
Conclusions
We have successfully isolated and expanded CTCs from patients with LUDC. CTCDOs culture allowed for expansion of cells to a critical mass and exploration of them to assess mutations using less sensitive techniques. This non-invasive way could be alternative to tissue biopsies in patients with small biopsy and/or requiring a rebiopsy for molecular testing. Further optimization of the culture methodology is required, concomitantly with the functional and molecular characterization, with the aim of establishing CTCDO models for treatment response prediction and studying tumor heterogeneity and metastatic cascade.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
M. Lahmadi.
Funding
The national Directorate-General for Scientific Research and Technological Development (DGRSDT).
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
22P - Pre-clinical development of CVGBM: A therapeutic mRNA-based multiepitope vaccine for glioblastoma
Presenter: Ronja Mülfarth
Session: Poster session 07
23P - Germline testing in a selected cohort of non-small cell lung cancer (NSCLC) patients: Final results from the INHERITY LC study
Presenter: Maria Zurera Berjaga
Session: Poster session 07
24P - Assessment of an AI algorithm to classify germline variants in the ATM cancer predisposition gene
Presenter: Nooshin Bayat
Session: Poster session 07
25P - NGS-based identification of novel hereditary breast/ovarian cancer genes in patients with clinical features of genetic predisposition
Presenter: Ekaterina Kuligina
Session: Poster session 07
26P - Multi-feature cell free DNA analysis and ensemble machine learning for early detection of cancer
Presenter: Seongmun Jeong
Session: Poster session 07
27P - Molecular insights on cutaneous melanoma hyperpigmentation and therapy resistance
Presenter: Elena Andreucci
Session: Poster session 07
28P - Targeting YAP1 as a biomarker of resistance and therapeutic strategy in melanoma immunotherapy
Presenter: Szonja Kovács
Session: Poster session 07
29P - Considering intra-patient response variability in clinical trials: Implications for treatment efficacy and survival
Presenter: Caryn Geady
Session: Poster session 07
Resources:
Abstract
30P - CDK4/6 inhibitors dephosphorylate RNF26 to stabilize TSC1 and increase the sensitivity of ccRCC to mTOR inhibitors
Presenter: Yang Zheng
Session: Poster session 07
31P - Napabucasin transforms liver microenvironment and boosts immunotherapy efficacy by converting potential metastases into “hot” tumors
Presenter: Li Lin
Session: Poster session 07