Abstract 189P
Background
Targeted therapies improve the clinical outcome of cancer treatment. However, in solid tumors a cancer cell subpopulation survives during initial therapy and evolves into drug tolerant persister cells (DTPs) that maintain a residual disease reservoir. Residual disease contributes to lethal tumor progression; identifying and eliminating DTPs could benefit future treatment paradigms. We have shown that Hippo pathway effector Yes Associated Protein-1 (YAP1), a transcriptional co-regulator, is activated in oncogene-driven cancers in response to targeted therapy and maintains the DTP phenotype. In this study, we develop and validate a deep learning-based predictive model for the identification of active YAP1-mediated DTP states from hematoxylin & eosin (H&E) and immunohistochemistry (IHC) images of lung and skin cancer.
Methods
H&E and/or paired YAP1-stained IHC images from clinical models of lung and skin cancer were collected throughout targeted therapy and annotated for active YAP1-containing cells with semi-automation using high performance computing clusters. A modified U-Net algorithm was used for image segmentation, training, validation, and testing.
Results
2,267 images were annotated, producing over 80,000 patches containing YAP positive cells that comprised the training dataset. Subsequently, we constructed a customized deep-learning model to detect YAP positive DTP cell states from whole histopathological image slides. The model achieved 0.9091, 0.8949, and 0.902 accuracy in training, validation, and testing datasets for lung cancer, respectively. We applied our model to an external dataset of LUAD diagnostic H&E images (n=541) for YAP1 prediction and showed higher YAP1 scores correlate with poor overall survival.
Conclusions
Our model detects YAP1 activation-mediated DTPs throughout targeted therapy treatment. Following further clinical validation, model implementation into routine cancer care in the future could identify patient subpopulations with YAP1 activated tumors who would most benefit from receiving YAP1-targeted small molecule inhibitors.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of California, San Francisco.
Funding
National Science Foundation Graduate Research Fellowship Program, Helen Diller Comprehensive Cancer Center, University of California Discovery Fellowship.
Disclosure
T. Bivona: Financial Interests, Institutional, Research Funding: Novartis, Strategia, Kinnate, Revolution Medicines; Financial Interests, Personal and Institutional, Advisory Role: Array/Pfizer, Revolution Medicines, Springworks, Jazz Pharmaceuticals, Relay Therapeutics, Rain Therapeutics. All other authors have declared no conflicts of interest.
Resources from the same session
172P - HER2 expression across solid tumors and real-world implications for use of fam-trastuzumab deruxtecan-nxki (T-Dxd)
Presenter: Ahmed Ismail
Session: Poster session 08
173P - Unveiling a novel EpCAM-CD24+ circulating cells with unidentified origin associated with breast cancer distant metastasis
Presenter: Evgeniya Grigoryeva
Session: Poster session 08
174P - Prognostic value of the immune and metabolic profile in the response to neoadjuvant treatment with ICIs in triple-negative breast cancer patients (TNBC)
Presenter: Lucía Serrano García
Session: Poster session 08
175P - Utility of artificial intelligence (AI) in Ki67 scoring of a breast cancer (BC) patient population
Presenter: Xavier Pichon
Session: Poster session 08
176P - ERBB2 amplifications across sex, race, and cancer types
Presenter: Marc Machaalani
Session: Poster session 08
177P - HER2 testing in multiple solid tumors: Concordance between 3 scoring algorithms
Presenter: Wentao Yang
Session: Poster session 08
178P - PD-L1 expression in ER-low versus triple-negative (TN) advanced breast cancer (aBC), and according to phenotypic evolution from primary to recurrent disease
Presenter: Federica Miglietta
Session: Poster session 08
179P - Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
Presenter: Seong Hwan Park
Session: Poster session 08
181P - Molecular characterization and immune microenvironment analysis of MSI-H patients with or without MMR gene mutations
Presenter: Mengxi Ge
Session: Poster session 08