Abstract 189P
Background
Targeted therapies improve the clinical outcome of cancer treatment. However, in solid tumors a cancer cell subpopulation survives during initial therapy and evolves into drug tolerant persister cells (DTPs) that maintain a residual disease reservoir. Residual disease contributes to lethal tumor progression; identifying and eliminating DTPs could benefit future treatment paradigms. We have shown that Hippo pathway effector Yes Associated Protein-1 (YAP1), a transcriptional co-regulator, is activated in oncogene-driven cancers in response to targeted therapy and maintains the DTP phenotype. In this study, we develop and validate a deep learning-based predictive model for the identification of active YAP1-mediated DTP states from hematoxylin & eosin (H&E) and immunohistochemistry (IHC) images of lung and skin cancer.
Methods
H&E and/or paired YAP1-stained IHC images from clinical models of lung and skin cancer were collected throughout targeted therapy and annotated for active YAP1-containing cells with semi-automation using high performance computing clusters. A modified U-Net algorithm was used for image segmentation, training, validation, and testing.
Results
2,267 images were annotated, producing over 80,000 patches containing YAP positive cells that comprised the training dataset. Subsequently, we constructed a customized deep-learning model to detect YAP positive DTP cell states from whole histopathological image slides. The model achieved 0.9091, 0.8949, and 0.902 accuracy in training, validation, and testing datasets for lung cancer, respectively. We applied our model to an external dataset of LUAD diagnostic H&E images (n=541) for YAP1 prediction and showed higher YAP1 scores correlate with poor overall survival.
Conclusions
Our model detects YAP1 activation-mediated DTPs throughout targeted therapy treatment. Following further clinical validation, model implementation into routine cancer care in the future could identify patient subpopulations with YAP1 activated tumors who would most benefit from receiving YAP1-targeted small molecule inhibitors.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of California, San Francisco.
Funding
National Science Foundation Graduate Research Fellowship Program, Helen Diller Comprehensive Cancer Center, University of California Discovery Fellowship.
Disclosure
T. Bivona: Financial Interests, Institutional, Research Funding: Novartis, Strategia, Kinnate, Revolution Medicines; Financial Interests, Personal and Institutional, Advisory Role: Array/Pfizer, Revolution Medicines, Springworks, Jazz Pharmaceuticals, Relay Therapeutics, Rain Therapeutics. All other authors have declared no conflicts of interest.
Resources from the same session
152P - Exploratory biomarker analysis of phase III ASTRUM-004 study: Serplulimab plus chemotherapy as first-line treatment for advanced squamous non-small-cell lung cancer
Presenter: Caicun Zhou
Session: Poster session 08
153P - 23ME-01473, an Fc-enhanced anti-ULBP6/2/5 antibody, restores anti-tumor NK cell function through NKG2D and FcgRIIIa activation
Presenter: Kim Gerrick
Session: Poster session 08
154P - Phase II study of nivolumab and relatlimab utilizing single cell analysis of circulating T cells reveals immune features associated with response to dual PD-1 and LAG-3 inhibition
Presenter: James Dollar
Session: Poster session 08
155P - The molecular basis of the lymphocyte stability index (LSI): A pan-cancer peripheral biomarker for survival post immune checkpoint blockade (ICB)
Presenter: Robert Watson
Session: Poster session 08
156P - Microbiota-related multiomics to assess the clinical relevance of antibiotics (ATB) in immunotherapy (ICI)
Presenter: Adele Bonato
Session: Poster session 08
157P - Soluble and EV-bound CD27 act as antagonistic biomarkers in patients with solid tumors undergoing immunotherapy
Presenter: Joao Gorgulho
Session: Poster session 08
158P - Patterns of immune-related adverse events in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
160P - Predicting immune-related adverse events using biomarkers in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
161P - Fibroblast activation protein (FAP)-CD40 (RO7300490) mediates intratumoral DC maturation and modulation of the tumor microenvironment
Presenter: Ignacio Melero
Session: Poster session 08