Abstract 1113P
Background
Biomarkers and clinical features don’t currently enable the identification of standardized risk categories for optimal treatment strategies in metastatic melanoma. This issue underlines the need of a more sophisticated and comprehensive prognostic evaluation. The aim of this retrospective observational study is to develop a machine learning model based on pre-therapy Computed Tomography (CT) images to stratify the single-subject prognosis in melanoma patients.
Methods
Images from 60 metastatic lesions were collected, 32 (53.3%) belonged to “favorable prognosis” class and 28 (46.7%) to “unfavorable prognosis” class, according to patients’ prognosis intended as Progression Free Survival (PFS) > treatment median PFS. This image-set was used for the training and cross-validation of different radiomic-machine learning models through the Trace4Research software (DeepTrace Technologies srl, Italy). A radiomic approach was applied, under the hypothesis that radiomic feature could capture the disease heterogeneity among the two groups. Three models consisting of 4 ensembles of machine learning classifiers (random forests, support vector machines and k-nearest neighbor classifiers) were developed for the binary classification task of interest (favorable vs unfavorable), based on supervised learning, using prognosis as reference standard.
Results
The best model showed ROC-AUC (%) of 82 (majority vote), 81.6** (mean) [77.9-85.4], Accuracy (%) of 77, 75.4** [74.1-76.7], Sensitivity (%) of 84, 80.5** [78-83], Specificity (%) of 68, 69.6** [66.4-72.9], PPV (%) of 75, 75.2** [73.5-76.9], and NPV (%) of 79, 75.7** [73.8-77.7] (*p<0.05, **p<0.005).
The model was external tested on 20 new patients (N=70 lesions) and the classification of each patient’s prognosis was obtained using the one most frequently assigned by the classifier to the metastatic lesions of the same patient. The results show that the classifier can predict subjects with a favorable prognosis with good accuracy (85%). A third of patients (35%) with unfavorable prognosis were predicted.
Conclusions
These preliminary data underscore the potential of radiomics-based machine learning models in predicting prognosis in patients with metastatic melanoma.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
M. Russillo: Financial Interests, Institutional, Financially compensated role: Pierre Fabre Oncologie, Novartis, MSD, BMS. V. Ferraresi: Financial Interests, Institutional, Financially compensated role: BMS, Novartis, Pierre Fabre Oncologie, MSD. All other authors have declared no conflicts of interest.
Resources from the same session
1111P - Genomic and transcriptomic analysis of Japanese melanoma reveals candidate biomarkers for immune checkpoint inhibitor responders
Presenter: Toshihiro Kimura
Session: Poster session 04
1112P - Immunotherapy after progression to double immunotherapy: Pembrolizumab and Lenvatinib versus conventional chemotherapy for patients with metastatic melanoma after failure of PD-1/CTLA-4 inhibition
Presenter: Dimitrios Ziogas
Session: Poster session 04
1114P - Deciphering unresectable in-transit metastasis in melanoma: Multi-modal and longitudinal insights
Presenter: Giuseppe Tarantino
Session: Poster session 04
1115P - Multiomics clustering of patients with cutaneous melanoma to reveal survival trends based on tumor immune evasion features
Presenter: Adeliya Leleytner
Session: Poster session 04
1116P - Application of the Scottish inflammatory prognostic score to the south-east Scotland cancer network real-world melanoma cohort
Presenter: Karim El-Shakankery
Session: Poster session 04
1117P - Intratumoral microbiota is associated with prognosis in Chinese patients with skin melanoma
Presenter: Hang Jiang
Session: Poster session 04
1118P - Immunological alterations during neoadjuvant BRAF/MEK inhibition in patients with prior unresectable regionally advanced melanoma: Translational analysis from the REDUCTOR trial
Presenter: Femke Burgers
Session: Poster session 04
1119P - Genomic and transcriptomic predictors of resistance to anti-PD1 monotherapy in patients with advanced melanoma
Presenter: Wenya Wang
Session: Poster session 04
1120P - Tumoral and peripheral immunophenotype of patients with stage II/III melanoma undergoing adjuvant immunotherapy following tumor resection
Presenter: Maria Ascierto
Session: Poster session 04
1121P - Artificial Intelligence to predict BRAF mutational status from whole slide images in melanoma
Presenter: Céline Bossard
Session: Poster session 04