Abstract 817P
Background
Current clinical prediction indexes lack the requisite accuracy for extranodal natural killer/T-cell lymphoma (ENKTL) following non-anthracycline-based therapy. This study addresses this gap by introducing and validating a machine learning (ML) algorithm based on clinicopathologic parameters to effectively stratify risk among ENKTL patients.
Methods
Data from 977 patients with ENKTL from 3 cohorts of China were analyzed. 15 ML algorithms were trained and validated for overall survival (OS) prediction in 644 patients from Sun Yat-sen University Cancer Center. The optimization of hyperparameters was conducted through an exhaustive ten-fold cross-validation grid search. External validations were performed in two external cohorts (N=187 from West China Hospital, and N=146 from Sichuan Cancer Hospital, respectively). Evaluation of model performance included Harrell’s c-index, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis.
Results
Among the 15 ML algorithms tested, Gradient Boosting Machine (GBM) demonstrated superior performance. The ENKTL-ML score, generated by GBM, incorporated 13 clinicopathologic parameters. In external validation cohorts, the c-indexes for the ENKTL-ML score were 0.84 (95% confidence interval [CI]: 0.81, 0.88) and 0.83 (0.72, 0.94), respectively. The area under ROC curves for 5-year OS were ≥ 0.81. The ENKTL-ML score outperformed existing indexes in discriminatory ability and treatment recommendations. Notably, it effectively stratified patients into low-, intermediate-, and high-risk groups with distinctive survival outcomes. The ENKTL-ML score demonstrated the ability to differentiate low-risk patients from those at stage I. Adding anti-PD-1 immunotherapy as first-line treatment significantly improved survival in the high-risk group, with no substantial benefit observed in low/intermediate-risk patients. An online calculator for the ENKTL-ML score is accessible online.
Conclusions
The ENKTL-ML score serves as an innovative machine learning tool, facilitating risk stratification and aiding clinicians in decision-making for ENKTL patient management.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Y. Huang.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1182P - Determination of tumor PSMA expression in prostate cancer from blood using a novel epigenomic liquid biopsy platform
Presenter: Praful Ravi
Session: Poster session 09
1183P - Impact of multicancer early detection (MCED) test on participant-reported outcomes (PRO) and behavioral intentions by cancer risk
Presenter: Christina Dilaveri
Session: Poster session 09
1184P - Early real-world experience with positive multi-cancer early detection (MCED) test cases and negative initial diagnostic work-up
Presenter: Candace Westgate
Session: Poster session 09
1185P - Clinical applications of a novel blood-based fragmentomics assay for lung cancer detection
Presenter: Marc Siegel
Session: Poster session 09
1186P - SmartCS-LPLLM: Enhancing early cancer detection through ctDNA methylation analysis leveraging large language models
Presenter: Li Chao
Session: Poster session 09
1187P - Molecular diagnosis of lung cancer via ctDNA and ctRNA detection on bronchoscopic fluid specimens from 31 patients: A retrospective analysis
Presenter: Vincent Fallet
Session: Poster session 09
1188P - Modeled economic and clinical impact of a multi-cancer early detection (MCED) test in a population with hereditary cancer syndromes
Presenter: Sana Raoof
Session: Poster session 09
1189P - Cancer genome interpreter: A data-driven tool for tumor mutation interpretation
Presenter: Santiago Demajo
Session: Poster session 09
1190P - Circulating tumor DNA from the tumor-draining pulmonary vein as a biomarker in resected non-small cell lung cancer
Presenter: Raphael Werner
Session: Poster session 09
1191P - Efficient lung cancer stage prediction and outcome informatics with Bayesian deep learning and MCMC method
Presenter: Maria Gkotzamanidou
Session: Poster session 09