Abstract 1713P
Background
While longitudinal EHR data present a valuable resource for developing prognostic models for renal cell carcinoma (RCC), they lack well coded clinical outcomes including recurrence. This study harnesses this data to design a deep learning algorithm capable of accurately identifying recurrence information in individuals with localized RCC.
Methods
We curated codified and narrative EHR data including cancer characteristics extracted via natural language processing for a cohort of 28,715 patients with RCC diagnostic codes in Mass General Brigham. Gold standard labels on RCC diagnosis, recurrence timing and status were annotated for 350 patients via manual chart review. A semi-supervised label-efficient incident phenotyping deep learning algorithm (LATTE) was used to identify recurrence status and timing for eligible post-nephrectomy patients with non-metastatic RCC at diagnosis. RCC recurrence in EHR data identified via LATTE was validated against gold-standard labels and subsequently used to estimate recurrence rates stratified by AJCC TNM staging and Fuhrman grade.
Results
The eligible cohort included 5,992 patients. RCC recurrence in EHR data identified via LATTE achieved C-statistic of 0.928 in validation against annotated recurrence. The estimated 5-year recurrence rates were 16.7% (table). We observe a substantially higher recurrence risk for T3 patients (49.7%) vs T1 (3.4%) or T2 (14.3%). Table: 1713P
5-yr recurrence | |
Overall | 16.7 (15.6 %-17.8 %) |
T1 | 3.4 (2.7 %-4.2 %) |
T2 | 14.3 (11.5 %-18.4 %) |
T3 | 49.7 (45.8 %-53.7 %) |
T3G1/G2 | 25.2 (17.7 %-32.5 %) |
T3G3 | 54.2 (47.1 %-61.5 %) |
T3G4 | 72.3 (64.4 %-80.8 %) |
T4 | NR |
Conclusions
The study was successful in generating a deep learning algorithm to identify RCC recurrence in large EHR data, substantially reducing the need for time and resource intensive chart reviews. As part of ongoing research efforts, the RCC recurrence in EHR data identified via LATTE will be further used to develop an accurate recurrence risk prediction model to identify localized RCC patents at higher risk of recurrence.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Merck & Co., Inc.
Funding
Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc.
Disclosure
R. Bhattacharya: Financial Interests, Personal and Institutional, Stocks/Shares: Merck & Co., Inc.; Financial Interests, Personal, Full or part-time Employment: Merck & Co., Inc. A. Elfiky: Financial Interests, Personal, Advisory Board: McKinsey and Co.; Financial Interests, Personal, Full or part-time Employment: Merck & Co., Inc. V. Turzhitsky: Financial Interests, Personal, Stocks/Shares: Merck & Co., Inc.; Financial Interests, Personal, Full or part-time Employment: Merck & Co., Inc. R.R. McKay: Financial Interests, Personal, Advisory Board: Aveo, AstraZeneca, Bayer, Calithera, Dendreon, Exelixis, JNJ, Merck, Pfizer, Sanofi, Tempus, BMS, Lilly, Sanofi, Seagen, Telix, Sorrento Therapeutics, Eisai, Blue Earth Diagnostics; Financial Interests, Personal, Other, Molecular tumor board: Caris; Financial Interests, Personal, Other, Consultant: Dendreon, Myovant; Financial Interests, Personal, Invited Speaker: Exelixis, Merck, Novartis, Pfizer; Financial Interests, Steering Committee Member: Aveo, Merck, Eli Lilly; Financial Interests, Local PI: JNJ, Seagen, Calibr, Poseida, Oncternal, Scholar Rock, Merck, Xencor, Genentech, Eli Lilly, BMS; Financial Interests, Trial Chair: Bayer, AstraZeneca; Financial Interests, Institutional, Local PI: Exelixis. G. Jayram: Financial Interests, Personal, Financially compensated role, Consultant: Merck. M. Sundaram: Financial Interests, Personal, Full or part-time Employment: Merck & Co., Inc.; Financial Interests, Personal, Stocks or ownership: Merck & Co., Inc., AbbVie, Johnson & Johnson; Financial Interests, Personal, Stocks/Shares: Bristol Myers Squibb. All other authors have declared no conflicts of interest.
Resources from the same session
1627P - Long survivors after androgen deprivation therapy (ADT) with or without docetaxel for metastatic castration-sensitive prostate cancer (mCSPC): Long-term follow-up of GETUG-15
Presenter: Sarah Blanchet-Deverly
Session: Poster session 11
1628P - Factors influencing clinical and biological response in patients treated with [177Lu]Lu-PSMA-617 under France's early access program
Presenter: Vincent Habouzit
Session: Poster session 11
1629P - Lutetium-177–prostate-specific membrane antigen (177Lu-PSMA) therapy in patients (pts) with prior Radium-223 (223Ra)
Presenter: Kambiz Rahbar
Session: Poster session 11
1630P - A multicenter retrospective study on the efficacy of anti-PD-(L)1 in microsatellite unstable (MSI-H) metastatic castrate-resistant prostate cancer (mCRPC)
Presenter: Sandra Van Wilpe
Session: Poster session 11
1632P - Impact of androgen pathway inhibitors on cognitive function in elderly patients with metastatic prostate cancer: Results from the COG-PRO trial
Presenter: Antoine Boué
Session: Poster session 11
1634P - Does lower serum testosterone predict metastases-free survival in nmCRPC patients treated with novel antiandrogens? A post-hoc analysis of SPARTAN and ARAMIS
Presenter: Xudong Ni
Session: Poster session 11
1635P - Validation of automated bone scan index as a progression endpoint in two phase III studies of metastatic castration resistant prostate cancer (mCRPC) patients
Presenter: Andrea Knezevic
Session: Poster session 11