Abstract 56P
Background
The ROS1 G2032R mutation is the most common on-target resistance mutation in crizotinib treated ROS1-positive lung cancer patients. The aim of our study was to investigate resistance mechanisms in SCL34A2-ROS1G2032R positive Ba/F3 cells against second line treatment with lorlatinib.
Methods
Ba/F3 SLC34A2-ROS1G2032R cells were subjected to N-ethyl-N-nitrosourea (ENU) mutagenesis and clones were selected upon treatment with 1000 nM lorlatinib for 4 weeks. Resistant clones were analyzed for presence of on-target resistant mutations using Sanger sequencing. In addition, we generated subclones expressing SLC34A2-ROS1L2026M+G2032R and SLC34A2-ROS1L2026M in Ba/F3 cells. Sensitivity to ROS1 TKIs was determined by measuring cell viability and ROS1 phosphorylation. Molecular Dynamic simulations of the ATP binding pocket were performed for all ROS1 variants.
Results
The ENU-screen of 41 lorlatinib resistant clones revealed one with a mutation in the kinase domain: L2026M. Cell viability assays of the ENU-induced resistant cell line and the Ba/F3 cells transfected with the mutant SCL34A2-ROS1 fusion gene constructs revealed a decreased sensitivity of SLC34A2-ROS1L2026M+G2032R cells for lorlatinib, crizotinib, entrectinib and repotrectinib compared to the single mutants. Consistent with these findings, we observed phosphorylation of ROS1 fusion protein in the double mutant cells which was not inhibited upon treatment with ROS1 TKIs. The single mutant cells showed as expected a clear reduction in phosphorylated ROS1 fusion protein . Molecular modeling to unravel the effect of the mutations demonstrated that the volume of the ATP-binding pocket was reduced in single and double mutants compared to wild type. The double L2026M+G2032R mutant displayed the smallest pocket.
Conclusions
We identified a novel on-target mutation after inducing lorlatinib resistance in SLC34A2-ROS1G2032R Ba/F3 cells. This SLC34A2-ROS1L2026M+G2032R cell line was also resistant to crizotinib, entrectinib and repotrectinib. The resistance can be explained by a smaller ATP binding pocket in the mutated ROS1 fusion protein preventing effective binding of the investigated TKIs.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The Netherlands Organization for Scientific Research (NWO) Doctoral Grant for Teachers to C. Dijkhuizen Applied Research SIA (regieorgaan SIA) HBO-Postdoc Grant to M. Smelt.
Disclosure
A.J. Van Der Wekken: Financial Interests, Institutional, Funding: AstraZeneca, Boehringer Ingelheim, Pfizer, Roche, Takeda; Non-Financial Interests, Institutional, Advisory Board: AstraZeneca, Lilly, Roche, Takeda; Non-Financial Interests, Institutional, Speaker, Consultant, Advisor: AstraZeneca, BMS, Lilly, Pfizer, Roche; Financial Interests, Institutional, Other, involved in Clinical Studies: AstraZeneca, Amgen, Blueprint Medicin, Nuvalent, Novartis, Merck, Pfizer, Roche, Takeda. All other authors have declared no conflicts of interest.
Resources from the same session
4P - Spatially resolved transcriptome elucidates bidirectional tertiary lymphoid structure interacts with tumor microenvironment of non-small cell lung cancer
Presenter: Xin Zhao
Session: Poster session 09
5P - Tertiary lymphoid structures (TLS) presence and stromal blood vessels heterogeneity differentially influence recurrence, lymphovascular, and perineural invasion in breast cancer molecular subtypes
Presenter: Andrei Cosma
Session: Poster session 09
6P - Combined single-cell and spatially resolved mapping of the human lymph node ecosystem reveals fundamental principles of lymphoma tissue organization
Presenter: Daniel Hübschmann
Session: Poster session 09
7P - Engineered salmonella blocks cancer metastasis by activating NK cells in an IFN-γ-dependent manner
Presenter: JIANDONG HUANG
Session: Poster session 09
8P - Modulating tumor microenvironment using a VEGF active immunotherapeutic approach in gastrointestinal tumors: Beyond angiogenesis modulation
Presenter: Mónica Bequet-Romero
Session: Poster session 09
9P - Identification of a μCT-based radiomic signature of CD8+ tumour infiltrating lymphocytes in an orthotopic murine model
Presenter: Giulia Mazzaschi
Session: Poster session 09
10P - Cancer cells induce intracellular gap formation in sinusoidal endothelial cells to produce liver metastasis through pro-inflammatory paracrine mechanisms
Presenter: Hoang Truong
Session: Poster session 09
11P - Targeting stromal cells to reverse immune suppression in triple-negative breast cancer
Presenter: Julia Chen
Session: Poster session 09
12P - Immuno-suppressive role of tumour-derived GDF-15 on myeloid cells
Presenter: Christine Schuberth-Wagner
Session: Poster session 09
13P - Disrupting the immunosuppressive tumor microenvironment using genetically engineered macrophages for triple-negative breast cancer therapy
Presenter: Sabrina Traxel
Session: Poster session 09