Abstract 56P
Background
The ROS1 G2032R mutation is the most common on-target resistance mutation in crizotinib treated ROS1-positive lung cancer patients. The aim of our study was to investigate resistance mechanisms in SCL34A2-ROS1G2032R positive Ba/F3 cells against second line treatment with lorlatinib.
Methods
Ba/F3 SLC34A2-ROS1G2032R cells were subjected to N-ethyl-N-nitrosourea (ENU) mutagenesis and clones were selected upon treatment with 1000 nM lorlatinib for 4 weeks. Resistant clones were analyzed for presence of on-target resistant mutations using Sanger sequencing. In addition, we generated subclones expressing SLC34A2-ROS1L2026M+G2032R and SLC34A2-ROS1L2026M in Ba/F3 cells. Sensitivity to ROS1 TKIs was determined by measuring cell viability and ROS1 phosphorylation. Molecular Dynamic simulations of the ATP binding pocket were performed for all ROS1 variants.
Results
The ENU-screen of 41 lorlatinib resistant clones revealed one with a mutation in the kinase domain: L2026M. Cell viability assays of the ENU-induced resistant cell line and the Ba/F3 cells transfected with the mutant SCL34A2-ROS1 fusion gene constructs revealed a decreased sensitivity of SLC34A2-ROS1L2026M+G2032R cells for lorlatinib, crizotinib, entrectinib and repotrectinib compared to the single mutants. Consistent with these findings, we observed phosphorylation of ROS1 fusion protein in the double mutant cells which was not inhibited upon treatment with ROS1 TKIs. The single mutant cells showed as expected a clear reduction in phosphorylated ROS1 fusion protein . Molecular modeling to unravel the effect of the mutations demonstrated that the volume of the ATP-binding pocket was reduced in single and double mutants compared to wild type. The double L2026M+G2032R mutant displayed the smallest pocket.
Conclusions
We identified a novel on-target mutation after inducing lorlatinib resistance in SLC34A2-ROS1G2032R Ba/F3 cells. This SLC34A2-ROS1L2026M+G2032R cell line was also resistant to crizotinib, entrectinib and repotrectinib. The resistance can be explained by a smaller ATP binding pocket in the mutated ROS1 fusion protein preventing effective binding of the investigated TKIs.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The Netherlands Organization for Scientific Research (NWO) Doctoral Grant for Teachers to C. Dijkhuizen Applied Research SIA (regieorgaan SIA) HBO-Postdoc Grant to M. Smelt.
Disclosure
A.J. Van Der Wekken: Financial Interests, Institutional, Funding: AstraZeneca, Boehringer Ingelheim, Pfizer, Roche, Takeda; Non-Financial Interests, Institutional, Advisory Board: AstraZeneca, Lilly, Roche, Takeda; Non-Financial Interests, Institutional, Speaker, Consultant, Advisor: AstraZeneca, BMS, Lilly, Pfizer, Roche; Financial Interests, Institutional, Other, involved in Clinical Studies: AstraZeneca, Amgen, Blueprint Medicin, Nuvalent, Novartis, Merck, Pfizer, Roche, Takeda. All other authors have declared no conflicts of interest.
Resources from the same session
14P - Peripheral immune kinetics in survival prediction of small cell lung cancer patients treated with immune checkpoint blockade therapy
Presenter: MIGUEL GALINDO CAMPOS
Session: Poster session 09
15P - CBL E3 ubiquitin ligases are key inhibitory regulators in PD-1/LAG-3 co-signaling in human cancers, targeted through bispecific co-blockade
Presenter: Luisa Chocarro
Session: Poster session 09
16P - Terminally exhausted CD8+ T cells and increased immunosuppressive soluble factors in malignant ascites of patients with gastric cancer with peritoneal metastasis
Presenter: Hye Sook Han
Session: Poster session 09
17P - Continued expansion of long-lived effect CD8+ T cells associates with durable response post-PD-1 blockade
Presenter: Robert Watson
Session: Poster session 09
18P - Exposure of calreticulin is required for vitamin C immunomediated cancer surveillance
Presenter: Alessandro Cavaliere
Session: Poster session 09
19P - Preclinical and clinical significance of VEGF deprivation in ovarian cancer through a specific active immunotherapy
Presenter: Yanelys Morera
Session: Poster session 09
20P - The essential role of DNA repair in the pharmacological activities of AST-3424
Presenter: Fanying Meng
Session: Poster session 09
21P - Implications of KMT2C knockdown for DNA damage repair in breast cancer
Presenter: Philip Bredin
Session: Poster session 09
22P - Clinical significance of DNA damage response mutations in early stage NSCLC
Presenter: Haoran Zhang
Session: Poster session 09
23P - PMC-309: A highly selective anti-VISTA antibody reverses immunosuppressive TME to immune-supportive
Presenter: Cheon Ho Park
Session: Poster session 09