Abstract 1229P
Background
Accurate diagnosis plays a critical role in the effective management of glial malignancies. However, obtaining tissue specimens for histopathologic investigation carries inherent procedural risks. We present profiling of circulating glial cells (CGCs) by analyzing cell lineage-specific markers using immunocytochemistry (ICC) and EGFR gain by fluorescence In situ hybridization (FISH) on the Circulating glial cells.
Methods
In a prospective blinded study, blood specimens from patients suspected of Intracranial space-occupying lesions (ICSOL) (N=28) were collected before the invasive biopsy. CGCs were profiled using the TriNetra™ Glio assay that detects CGCs using ICC profiling of cell lineage markers (GFAP and OLIG2). CGCs were also used to perform FISH using EGFR gain. In a separate cohort comprising matched tissue and blood specimens from 44 cases (22 benign and malignant cases each), CGC profiling by ICC and EGFR FISH was performed to evaluate the concordance of profiled biomarkers on the circulating CGC population.
Results
TriNetra Glio assay successfully found CGCs in 23 out of 25 (92%) cases diagnosed with Glial malignancies. Among the 11 cases of Glioblastoma and 2 cases of astrocytoma Grade 3, EGFR amplification was found in 4 and 1 cases, respectively. In a matched cohort, EGFR copy gain was detected in tumor tissue in 8 (36%) among 22 cases of malignant glial tumors, and EGFR gain was also detectable in corresponding blood analysis. Among the remaining 14 samples with normal EGFR tissue status according to FISH, the CGCs also exhibited normal EGFR status. Further, among the 22 cases of benign tumors, there were no instances of EGFR copy gain detected by FISH on tumor tissue. All 22 samples were also negative for CGCs indicating high specificity.
Conclusions
We demonstrate a reliable method for detecting Circulating Glial Cells. This can offer valuable insights into diagnosis of suspected glial malignacies in cases where performing a biopsy is not possible. Moreover, molecular analysis of CGCs shows the potential in providing diagnostic insights that align with the current WHO classification system for the central nervous system.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Datar Cancer Genetics.
Funding
Has not received any funding.
Disclosure
F. Massoudi: Non-Financial Interests, Institutional, Advisory Board: Datar Cancer Genetics. D. Akolkar, S. Schuster, V. Datta, P. Shejwalkar, S. Patel, D.S. Patil: Financial Interests, Personal, Full or part-time Employment: Datar Cancer Genetics. R. Datar: Financial Interests, Personal, Member of Board of Directors: Datar Cancer Genetics. T. Crook: Non-Financial Interests, Personal, Advisory Board: Datar Cancer Genetics. All other authors have declared no conflicts of interest.
Resources from the same session
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1244P - AI-based accurate PD-L1 IHC assessment in non-small cell lung cancer across multiple sites and scanners
Presenter: Ramona Erber
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14
1250P - Assessing lung carcinoma: A retrospective study on volume evaluation, consolidation and infiltration using chest OMX
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14