Abstract 1254P
Background
The Brain OMX diagnostic tool is designed to facilitate the analysis of both structural and functional connectivity of the brain using T1-weighted structural MRI (T1) and resting-state functional magnetic resonance imaging (rs-fMRI) data. This tool utilizes a retrospective approach to gain insights into the intricate workings of the brain and its underlying connections which also assist in various stages of surgical treatment needed in neurodegenerative diseases.
Methods
The Fast Surfer pipeline is designed to be computationally efficient, allowing for the rapid processing of large-scale MRI datasets. T1-weighted structural MRI provides detailed information about the anatomical features of the brain. Functional connectivity is measured by assessing the synchronization of the Blood Oxygenation Level Dependent (BOLD) signals between different brain regions.
Results
Auditory network, cingulate network, Default Mode network, DMN and Occipital network, Dorsal Attention network, Language network, Left attention network, Right Attention network, salience network, and visual network correlations are provided. Brain complexity, neurological disorders, and personalized treatment strategies can be achieved. The correlation matrix creates a comprehensive graph from RS-FMRI.
Table: 1254P
Structural analysis using BrainOMX
Subregion | Total | Left | Right | |||
Volume [cm3] | % ICV | Volume [cm3] | % ICV | Volume[cm3] | % ICV | |
Cortical white matter | 462.49 | 33.77% | 230.76 | 16.85 | 231.73 | 16.92 |
Thalamus | 13.97 | 1.02% | 7.11 | 0.52 | 6.85 | 0.50 |
Caudate | 6.13 | 0.45% | 2.96 | 0.22 | 3.17 | 0.23 |
Putamen | 9.46 | 0.69% | 4.72 | 0.34 | 4.74 | 0.35 |
Pallidum | 3.67 | 0.27% | 1.87 | 0.14 | 1.80 | 0.13 |
Hippocampus | 7.18 | 0.52% | 3.50 | 0.26 | 3.68 | 0.27 |
Amygdala | 2.71 | 0.20% | 1.36 | 0.10 | 1.35 | 0.10 |
Conclusions
By combining both structural and functional connectome analyses, the Brain OMX diagnostic tool aims to provide a comprehensive understanding of the brain's architecture for carcinomas and also its implications for neurological conditions. The tabulation shows Alzheimers neurodegenrative patient data, he connectivity can be the result of a direct anatomic connection or an indirect path via a mediating region or may have no known anatomic correlate. rs-fMRI is an imaging technique that plays a growing role in characterizing normal and abnormal functional brain connectivity in a variety of clinical conditions.
Clinical trial identification
Editorial acknowledgement
Data Acknowledgement:
1. Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M, FastSurfer - A fast and accurate deep learning based neuroimaging pipeline, NeuroImage 219 (2020), 117012. https://doi.org/10.1016/j.neuroimage.2020.117012
2. Henschel L*, Kügler D*, Reuter M. (*co-first). FastSurferVINN: Building Resolution-Independence into Deep Learning Segmentation Methods - A Solution for HighRes Brain MRI. NeuroImage 251 (2022), 118933. \\http://dx.doi.org/10.1016/j.neuroimage.2022.118933.
3. Zolotova, S. V., Golanov, A. V., Pronin, I. N., Dalechina, A. V., Nikolaeva, A. A., Belyashova, A. S., Usachev, D. Y., Kondrateva, E. A., Druzhinina, P. V., Shirokikh, B. N., Saparov, T. N., Belyaev, M. G., & Kurmukov, A. I. (2023). Burdenko’s Glioblastoma Progression Dataset (Burdenko-GBM-Progression) (Version 1) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/E1QP-D183
4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \\https://doi.org/10.1007/s10278-013-9622-7
5. Semmineh, N. B., Stokes, A. M., Bell, L. C., Boxerman, J. L., & Quarles, C. C. (2020). GBM-DSC-MRI-DRO [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2020.RMWVZWIX
6. Semmineh, N. B., Stokes, A. M., Bell, L. C., Boxerman, J. L., & Quarles, C. C. (2017). A Population-Based Digital Reference Object (DRO) for Optimizing Dynamic Susceptibility Contrast (DSC)-MRI Methods for Clinical Trials. In Tomography (Vol. 3, Issue 1, pp. 41–49). MDPI AG. \\https://doi.org/10.18383/j.tom.2016.00286
7. Kathleen M Schmainda, Melissa A Prah, Jennifer M Connelly, Scott D Rand. (2016). Glioma DSC-MRI Perfusion Data with Standard Imaging and ROIs [ Dataset ]. The Cancer Imaging Archive. \\DOI: 10.7937/K9/TCIA.2016.5DI84Js8
8. Schmainda KM, Prah MA, Rand SD, Liu Y, Logan B, Muzi M, Rane SD, Da X, Yen YF, Kalpathy-Cramer J, Chenevert TL, Hoff B, Ross B, Cao Y, Aryal MP, Erickson B, Korfiatis P, Dondlinger T, Bell L, Hu L, Kinahan PE, Quarles CC. (2018). Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. American Journal of Neuroradiology, 39(6), 1008–1016. DOI: 10.3174/ajnr.a5675
9.Barboriak, D. (2015). Data From RIDER NEURO MRI. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1.
10. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \\https://doi.org/10.1007/s10278-013-9622-7 PMCID: PMC3824915
Legal entity responsible for the study
PMX Inc., USA, and PMX, Seoul, Republic of Korea.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1785P - Changes in bone mineral density, trabecular bone score and body composition in metastatic hormone-sensitive prostate cancer (mHSPC) patients randomized to receive androgen deprivation + enzalutamide plus/minus zoledronic acid: The BonEnza study
Presenter: Alberto Dalla Volta
Session: Poster session 14
1787P - Prostate specific membrane antigen positron emission tomography (PSMA PET)-directed clinical outcomes in metastatic hormone-sensitive prostate cancer (mHSPC): Implications for the STAMPEDE2 trial design
Presenter: Hoda Abdel-Aty
Session: Poster session 14
1789P - Low- and high-volume disease in mHSPC: From CHAARTED to PSMA PET
Presenter: Lena Unterrainer
Session: Poster session 14
1790P - Utilisation rates of treatment intensification for metastatic hormone sensitive prostate cancer (mHSPC) in England, UK
Presenter: Joanna Dodkins
Session: Poster session 14
1791P - Molecular profiling and prognostic relevance of low PTEN expression in metastatic hormone-sensitive prostate cancer patients
Presenter: Marta Garcia De Herreros
Session: Poster session 14
1792P - Effects of enzalutamide on overall survival +/- early docetaxel in participants aged less than 70 yrs versus greater than or equal to 70 yrs in ENZAMET (ANZUP 1304)
Presenter: Lisa Horvath
Session: Poster session 14
1793P - PPROSTRATEGY: A SOGUG randomized trial of androgen deprivation therapy (ADT) plus docetaxel (dct) +/- nivolumab (nivo) or ipilimumab-nivolumab (ipi-nivo) in high-volume metastatic hormone-sensitive prostate cancer (hvHSPCa) - Safety and toxicity profiles from the pilot phase
Presenter: Jose Arranz Arija
Session: Poster session 14