Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster session 14

1254P - Retrospective analysis of brain OMX: Diagnostic tool for structural (T1) and functional connectome (RS-FMRI) analysis of brain

Date

21 Oct 2023

Session

Poster session 14

Topics

Cancer Diagnostics;  Staging and Imaging;  Cancer Research

Tumour Site

Presenters

Swarnambiga Ayyachamy

Citation

Annals of Oncology (2023) 34 (suppl_2): S711-S731. 10.1016/S0923-7534(23)01942-7

Authors

S. Ayyachamy1, G. Srinivasan2, A. Perumalla2, G. Nandakumar2, P. Priya vijayakumaran3, H. Kim4, D. Jawahar5, A. Faizal5, S. Dev Merlin6

Author affiliations

  • 1 Bioinformatics Lab, Biomedical Engineering Dept., Saveetha Engineering College, 600087 - Chennai/IN
  • 2 Biomedical, PMX, INC, 60007 - Chicago/US
  • 3 Biomedical, PMX, INC, 01000 - seoul/KR
  • 4 Other, PMX, INC, 01000 - seoul/KR
  • 5 Radio Diagnosis, Saveetha Medical College and Hospital, 602105 - Chennai/IN
  • 6 Surgery, Saveetha Medical College and Hospital, 602105 - Chennai/IN

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 1254P

Background

The Brain OMX diagnostic tool is designed to facilitate the analysis of both structural and functional connectivity of the brain using T1-weighted structural MRI (T1) and resting-state functional magnetic resonance imaging (rs-fMRI) data. This tool utilizes a retrospective approach to gain insights into the intricate workings of the brain and its underlying connections which also assist in various stages of surgical treatment needed in neurodegenerative diseases.

Methods

The Fast Surfer pipeline is designed to be computationally efficient, allowing for the rapid processing of large-scale MRI datasets. T1-weighted structural MRI provides detailed information about the anatomical features of the brain. Functional connectivity is measured by assessing the synchronization of the Blood Oxygenation Level Dependent (BOLD) signals between different brain regions.

Results

Auditory network, cingulate network, Default Mode network, DMN and Occipital network, Dorsal Attention network, Language network, Left attention network, Right Attention network, salience network, and visual network correlations are provided. Brain complexity, neurological disorders, and personalized treatment strategies can be achieved. The correlation matrix creates a comprehensive graph from RS-FMRI.

Table: 1254P

Structural analysis using BrainOMX

Subregion Total Left Right
Volume [cm3] % ICV Volume [cm3] % ICV Volume[cm3] % ICV
Cortical white matter 462.49 33.77% 230.76 16.85 231.73 16.92
Thalamus 13.97 1.02% 7.11 0.52 6.85 0.50
Caudate 6.13 0.45% 2.96 0.22 3.17 0.23
Putamen 9.46 0.69% 4.72 0.34 4.74 0.35
Pallidum 3.67 0.27% 1.87 0.14 1.80 0.13
Hippocampus 7.18 0.52% 3.50 0.26 3.68 0.27
Amygdala 2.71 0.20% 1.36 0.10 1.35 0.10

Conclusions

By combining both structural and functional connectome analyses, the Brain OMX diagnostic tool aims to provide a comprehensive understanding of the brain's architecture for carcinomas and also its implications for neurological conditions. The tabulation shows Alzheimers neurodegenrative patient data, he connectivity can be the result of a direct anatomic connection or an indirect path via a mediating region or may have no known anatomic correlate. rs-fMRI is an imaging technique that plays a growing role in characterizing normal and abnormal functional brain connectivity in a variety of clinical conditions.

Clinical trial identification

Editorial acknowledgement

Data Acknowledgement:

1. Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M, FastSurfer - A fast and accurate deep learning based neuroimaging pipeline, NeuroImage 219 (2020), 117012. https://doi.org/10.1016/j.neuroimage.2020.117012

2. Henschel L*, Kügler D*, Reuter M. (*co-first). FastSurferVINN: Building Resolution-Independence into Deep Learning Segmentation Methods - A Solution for HighRes Brain MRI. NeuroImage 251 (2022), 118933. \\http://dx.doi.org/10.1016/j.neuroimage.2022.118933.

3. Zolotova, S. V., Golanov, A. V., Pronin, I. N., Dalechina, A. V., Nikolaeva, A. A., Belyashova, A. S., Usachev, D. Y., Kondrateva, E. A., Druzhinina, P. V., Shirokikh, B. N., Saparov, T. N., Belyaev, M. G., & Kurmukov, A. I. (2023). Burdenko’s Glioblastoma Progression Dataset (Burdenko-GBM-Progression) (Version 1) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/E1QP-D183

4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \\https://doi.org/10.1007/s10278-013-9622-7

5. Semmineh, N. B., Stokes, A. M., Bell, L. C., Boxerman, J. L., & Quarles, C. C. (2020). GBM-DSC-MRI-DRO [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2020.RMWVZWIX

6. Semmineh, N. B., Stokes, A. M., Bell, L. C., Boxerman, J. L., & Quarles, C. C. (2017). A Population-Based Digital Reference Object (DRO) for Optimizing Dynamic Susceptibility Contrast (DSC)-MRI Methods for Clinical Trials. In Tomography (Vol. 3, Issue 1, pp. 41–49). MDPI AG. \\https://doi.org/10.18383/j.tom.2016.00286

7. Kathleen M Schmainda, Melissa A Prah, Jennifer M Connelly, Scott D Rand. (2016). Glioma DSC-MRI Perfusion Data with Standard Imaging and ROIs [ Dataset ]. The Cancer Imaging Archive. \\DOI: 10.7937/K9/TCIA.2016.5DI84Js8

8. Schmainda KM, Prah MA, Rand SD, Liu Y, Logan B, Muzi M, Rane SD, Da X, Yen YF, Kalpathy-Cramer J, Chenevert TL, Hoff B, Ross B, Cao Y, Aryal MP, Erickson B, Korfiatis P, Dondlinger T, Bell L, Hu L, Kinahan PE, Quarles CC. (2018). Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. American Journal of Neuroradiology, 39(6), 1008–1016. DOI: 10.3174/ajnr.a5675

9.Barboriak, D. (2015). Data From RIDER NEURO MRI. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1.

10. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \\https://doi.org/10.1007/s10278-013-9622-7 PMCID: PMC3824915

Legal entity responsible for the study

PMX Inc., USA, and PMX, Seoul, Republic of Korea.

Funding

Has not received any funding.

Disclosure

All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.