Abstract 479P
Background
Significant discordance rates in HER2 status between primary breast cancer (BC) and brain metastases (BCBM) have been reported, potentially affecting clinical decision-making. Biological recharacterization of BCBMs is difficult due to inherent neurosurgery risks. We here assess the potential of radiomics to non-invasively assess HER2 status of BCBMs.
Methods
We retrospectively identified BC patients from 2 centers, for which HER2 status evaluated on BCBMs (HER2-positive versus HER2-negative by ASCO-CAP) and preoperative brain MRI were available. A total of 218 radiomics features, complying with Imaging Biomarker Standardization Initiative feature definition, were extracted from manually segmented BCBMs using Python. Robust features (selected using LASSO) associated with HER2 status in univariate analysis (p<0.05) were tested in multivariate analysis. Linear regression model (LRM) and non-linear logistic regression model (NLRM) were constructed. Machine learning (ML) algorithms (decision tree, k-nearest neighbor, and support vector machine [SVM]), were tested, by spliting the dataset into 70% for training, 20% for testing, and 10% for validation. Classifiers were trained and tested using the cross-validation approach 10 times; median values for AUC, accuracy, sensitivity and specificity were obtained. The performance of the best classifiers was evaluated on the validation dataset. Analyses were performed using MATLAB R2021b Statistics and Machine Toolbox (MathWorks).
Results
We identified 54 BC patients, for which HER2 status evaluated on 56 BCBMs (HER2+ N=27, HER2- N=29) and preoperative brain MRI was available. At univariate analysis, 9 features were significantly associated with HER2 status, but diagnostic accuracy was low (maximum 67%). Using LRM and NLRM, including the 9 significant features at univariate analysis, accuracy increased to 79%. Using the ML approach, the best classifier among the pattern recognition approaches tested was a SVM including the 9 significant features, which reached an AUC of 0.97 and an accuracy of 91% and 86% on test and validation set, respectively.
Conclusions
Radiomics using machine learning approach shows potential to non-invasively predict HER2 status of BCBMs.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of Padova - Department of Surgery, Oncology and Gastroenterology.
Funding
University of Padova - 2021 STARS@UniPD Grant.
Disclosure
G. Griguolo: Financial Interests, Personal, Invited Speaker: Novartis, Eli Lilly; Financial Interests, Personal, Advisory Board: Gilead; Other, Travel Support: Novartis, Amgen, Daiichi Sankyo, Eli Lilly, Gilead; Other, Trave Support: Pfizer. W. Jacot: Financial Interests, Personal, Advisory Board: AstraZeneca, Eisai, Novartis, Roche, Pfizer, Eli Lilly, MSD, BMS, Chugai, Seagen, Daiichi Sankyo; Financial Interests, Personal, Invited Speaker: AstraZeneca, Pfizer, Seagen, Daiichi Sankyo; Financial Interests, Institutional, Research Grant: AstraZeneca, Daiichi Sankyo; Financial Interests, Coordinating PI: Roche, Daiichi Sankyo; Financial Interests, Local PI: Roche, Novartis, Daiichi Sankyo. M.V. Dieci: Financial Interests, Personal, Invited Speaker: Eli Lilly, Exact sciences, Gilead, Seagen, Daiichi Sankyo, Novartis; Financial Interests, Personal, Advisory Board: Novartis, Eli Lilly, Seagen, Exact Science, Daiichi Sankyo, Gilead; Financial Interests, Personal, Other, Consultancy: Pfizer; Financial Interests, Personal, Other, Consultancy on educational project: Roche. A. Darlix: Financial Interests, Institutional, Advisory Board: Servier. V. Guarneri: Financial Interests, Personal, Invited Speaker: Eli Lilly, Novartis, Amgen, GSK; Financial Interests, Personal, Advisory Board: Eli Lilly, Novartis, MSD, Gilead, Eli Lilly, Sanofi, Merck Serono, Exact Sciences, Eisai, Olema Oncology; Financial Interests, Institutional, Local PI: Eli Lilly, Roche, BMS, Novartis, AstraZeneca, MSD, Synton Biopharmaceuticals, Merck, GSK, Daiichi Sankyo, Nerviano; Non-Financial Interests, Member: ASCO. All other authors have declared no conflicts of interest.
Resources from the same session
1288P - Neoadjuvant therapy with anti-PD-1/PD-L1 plus platinum-base chemotherapy for resectable stage II-III non-small cell lung cancer: A systematic review and meta-analysis of randomized clinical trials
Presenter: Maria Dacoregio
Session: Poster session 04
1289TiP - LANTERN study: A multi-omics digital human avatar for integrating precision medicine into clinical practice for lung cancer patients
Presenter: Emilio Bria
Session: Poster session 04
1294P - A final analysis of a phase II study of durvalumab immediately after completion of chemoradiotherapy in unresectable stage III non–small-cell lung cancer: TORG1937 (DATE study)
Presenter: Tetsuro Kondo
Session: Poster session 04
1296P - Neoadjuvant camrelizumab and apatinib in patients with resectable non-small-cell lung cancer: One-year update from a phase II trial
Presenter: Wei Guo
Session: Poster session 04
1297P - An open-label, prospective phase II study of tislelizumab in combination with chidamide as consolidation therapy in locally advanced, unresectable, stage III NSCLC
Presenter: Yi Hu
Session: Poster session 04
1298P - Chemotherapy with concurrent proton vs. photon radiotherapy in stage III NSCLC: Effects on hematological toxicity and immune therapy
Presenter: Francesco Cortiula
Session: Poster session 04
1299P - The role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study
Presenter: Lingjuan Chen
Session: Poster session 04
1300P - Treatment and clinical outcome in recurrent/refractory locally advanced NSCLC following chemoradiotherapy and consolidative durvalumab
Presenter: Georg Evers
Session: Poster session 04