Abstract 479P
Background
Significant discordance rates in HER2 status between primary breast cancer (BC) and brain metastases (BCBM) have been reported, potentially affecting clinical decision-making. Biological recharacterization of BCBMs is difficult due to inherent neurosurgery risks. We here assess the potential of radiomics to non-invasively assess HER2 status of BCBMs.
Methods
We retrospectively identified BC patients from 2 centers, for which HER2 status evaluated on BCBMs (HER2-positive versus HER2-negative by ASCO-CAP) and preoperative brain MRI were available. A total of 218 radiomics features, complying with Imaging Biomarker Standardization Initiative feature definition, were extracted from manually segmented BCBMs using Python. Robust features (selected using LASSO) associated with HER2 status in univariate analysis (p<0.05) were tested in multivariate analysis. Linear regression model (LRM) and non-linear logistic regression model (NLRM) were constructed. Machine learning (ML) algorithms (decision tree, k-nearest neighbor, and support vector machine [SVM]), were tested, by spliting the dataset into 70% for training, 20% for testing, and 10% for validation. Classifiers were trained and tested using the cross-validation approach 10 times; median values for AUC, accuracy, sensitivity and specificity were obtained. The performance of the best classifiers was evaluated on the validation dataset. Analyses were performed using MATLAB R2021b Statistics and Machine Toolbox (MathWorks).
Results
We identified 54 BC patients, for which HER2 status evaluated on 56 BCBMs (HER2+ N=27, HER2- N=29) and preoperative brain MRI was available. At univariate analysis, 9 features were significantly associated with HER2 status, but diagnostic accuracy was low (maximum 67%). Using LRM and NLRM, including the 9 significant features at univariate analysis, accuracy increased to 79%. Using the ML approach, the best classifier among the pattern recognition approaches tested was a SVM including the 9 significant features, which reached an AUC of 0.97 and an accuracy of 91% and 86% on test and validation set, respectively.
Conclusions
Radiomics using machine learning approach shows potential to non-invasively predict HER2 status of BCBMs.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of Padova - Department of Surgery, Oncology and Gastroenterology.
Funding
University of Padova - 2021 STARS@UniPD Grant.
Disclosure
G. Griguolo: Financial Interests, Personal, Invited Speaker: Novartis, Eli Lilly; Financial Interests, Personal, Advisory Board: Gilead; Other, Travel Support: Novartis, Amgen, Daiichi Sankyo, Eli Lilly, Gilead; Other, Trave Support: Pfizer. W. Jacot: Financial Interests, Personal, Advisory Board: AstraZeneca, Eisai, Novartis, Roche, Pfizer, Eli Lilly, MSD, BMS, Chugai, Seagen, Daiichi Sankyo; Financial Interests, Personal, Invited Speaker: AstraZeneca, Pfizer, Seagen, Daiichi Sankyo; Financial Interests, Institutional, Research Grant: AstraZeneca, Daiichi Sankyo; Financial Interests, Coordinating PI: Roche, Daiichi Sankyo; Financial Interests, Local PI: Roche, Novartis, Daiichi Sankyo. M.V. Dieci: Financial Interests, Personal, Invited Speaker: Eli Lilly, Exact sciences, Gilead, Seagen, Daiichi Sankyo, Novartis; Financial Interests, Personal, Advisory Board: Novartis, Eli Lilly, Seagen, Exact Science, Daiichi Sankyo, Gilead; Financial Interests, Personal, Other, Consultancy: Pfizer; Financial Interests, Personal, Other, Consultancy on educational project: Roche. A. Darlix: Financial Interests, Institutional, Advisory Board: Servier. V. Guarneri: Financial Interests, Personal, Invited Speaker: Eli Lilly, Novartis, Amgen, GSK; Financial Interests, Personal, Advisory Board: Eli Lilly, Novartis, MSD, Gilead, Eli Lilly, Sanofi, Merck Serono, Exact Sciences, Eisai, Olema Oncology; Financial Interests, Institutional, Local PI: Eli Lilly, Roche, BMS, Novartis, AstraZeneca, MSD, Synton Biopharmaceuticals, Merck, GSK, Daiichi Sankyo, Nerviano; Non-Financial Interests, Member: ASCO. All other authors have declared no conflicts of interest.
Resources from the same session
457P - Disparities in receipt of CDK4/6 inhibitors with endocrine therapy as therapy for hormone receptor-positive, HER2-negative metastatic breast cancer in the real-world setting
Presenter: Gretchen Kimmick
Session: Poster session 04
458P - Metastatic breast cancer: How and how often do we communicate? Results from an Italian national survey
Presenter: Camilla Lisanti
Session: Poster session 04
460P - Impact of fulvestrant utilization on prognostic outcome among patients with HR+ve/HER2-ve metastatic breast cancer: Results from a real-world dataset
Presenter: Shaheenah Dawood
Session: Poster session 04
462P - Health outcomes of treatment sequences with eribulin or other single agents’ chemotherapy for treating relapsed metastatic HER2-negative breast cancer
Presenter: Simone Rivolo
Session: Poster session 04
463P - Impact of two waves of Sars-Cov-2 outbreak on the clinical presentation and outcomes of newly referred breast cancer cases at AP-HP: A retrospective multicenter cohort study
Presenter: Sonia Priou
Session: Poster session 04
464P - Developing a prognostic risk stratification model and treatment options for HER2-positive breast cancer brain metastasis
Presenter: JiaXin Chen
Session: Poster session 04
465P - Reporting of older subgroups enrolled to registration breast cancer trials, 2012-2021
Presenter: Colm Mac Eochagain
Session: Poster session 04