Abstract 48P
Background
Modulated electro-hyperthermia (mEHT) is an advanced option in the hyperthermia field, applying a 13.56 MHz radiofrequency electromagnetic current to induce tumor-specific damage. This study investigates the mEHT-induced molecular effect and the potential of combination non-steroid anti-inflammatory drugs (NSAIDs) to enhance its anti-tumor effects in 4T1 triple-negative breast cancer (TNBC) and B16F10 melanoma mouse models.
Methods
4T1 TNBC and B16F10 melanoma cell lines were injected into Balb/C and C57BL/6 mice, respectively. They have been treated according to the protocol with only mEHT or mEHT combined with non-selective COX-inhibitors (Aspirin) or selective COX2 inhibitors (SC236). Tumor volume was monitored by ultrasound and a digital caliper. At the end of the experiments, mice were euthanized and tumors excised for molecular studies.
Results
Here we report that mEHT monotherapy stimulates local IL1-beta and IL6, and consequently cyclooxygenase 2 (COX 2) production. These effects could be considered as part of a self-defensive, wound-healing reaction of the tumor to protect itself from the mEHT-induced stress. In the present study, we combined mEHT with non-steroid anti-inflmmatory drugs (NSAIDs), the non-selective (Aspirin), or the selective COX2 inhibitor (SC236) in vivo. Here we demonstrate that NSAID treatment synergistically increased the effect of mEHT in 4T1 TNBC. Tumor weight and tumor volume (measured by ultrasound and a digital caliper) were lowest, and the tumor destruction ratio (TDR) was the highest in the combination treated (NSAID + mEHT) groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3 (cC3), suggesting an important role for apoptosis. Similarly, in the B16F10 melanoma model, lung nodules were significantly less in mice treated with mEHT + Aspirin.
Conclusions
NSAIDs effectively enhance the mEHT anti-tumor effect in TNBC and melanoma cancer models; they increase tumor destruction, where apoptosis may play a role. Disecting the exact molecular mechanisms further is under our current investigation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Semmelweis University.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
68P - Dendritic polylysine with paclitaxel and triptolide codelivery for enhanced NSCLC ferroptosis through the accumulation of ROS
Presenter: Huae Xu
Session: Poster session 09
69P - Novel monoclonal antibodies can distinguish Cripto-1 from Cripto-3 proteins: Clinical implications and potential new biomarkers
Presenter: Josune Garcia-Sanmartin
Session: Poster session 09
70P - The human intratumor mycobiome is significantly influenced by an individual's race
Presenter: Dan Coster
Session: Poster session 09
71P - Preclinical characterization of ARX305: A next-generation anti-CD70 antibody drug conjugate for the treatment of CD70-expressing cancers
Presenter: Lillian Skidmore
Session: Poster session 09
72P - Impact of extended panel of genes for germline cancer testing
Presenter: Shaheenah Dawood
Session: Poster session 09
73P - Preclinical and clinical presentation of the nerve-driven tumor spread
Presenter: Dawid Sigorski
Session: Poster session 09
74P - Characterization of ERBB2 variation and their association with immune response in solid tumours
Presenter: Dong Wang
Session: Poster session 09
75P - Double-stranded RNA transfection induced anti-tumour effect mediated by dual RIG-I and TLR-3 immune pathways
Presenter: Jiayu Tai
Session: Poster session 09
76P - Improvement of whole-cell cancer vaccine anti-tumor effect by different injection methods
Presenter: Chin yang Chang
Session: Poster session 09
77P - Normative data on the sexual health questionnaires - QLQ-SHQ22, and the sexual domains of the QLQ-BR23/BR45 - for Norwegian general population with and without cancer
Presenter: Ragnhild Åsberg
Session: Poster session 09