Abstract 48P
Background
Modulated electro-hyperthermia (mEHT) is an advanced option in the hyperthermia field, applying a 13.56 MHz radiofrequency electromagnetic current to induce tumor-specific damage. This study investigates the mEHT-induced molecular effect and the potential of combination non-steroid anti-inflammatory drugs (NSAIDs) to enhance its anti-tumor effects in 4T1 triple-negative breast cancer (TNBC) and B16F10 melanoma mouse models.
Methods
4T1 TNBC and B16F10 melanoma cell lines were injected into Balb/C and C57BL/6 mice, respectively. They have been treated according to the protocol with only mEHT or mEHT combined with non-selective COX-inhibitors (Aspirin) or selective COX2 inhibitors (SC236). Tumor volume was monitored by ultrasound and a digital caliper. At the end of the experiments, mice were euthanized and tumors excised for molecular studies.
Results
Here we report that mEHT monotherapy stimulates local IL1-beta and IL6, and consequently cyclooxygenase 2 (COX 2) production. These effects could be considered as part of a self-defensive, wound-healing reaction of the tumor to protect itself from the mEHT-induced stress. In the present study, we combined mEHT with non-steroid anti-inflmmatory drugs (NSAIDs), the non-selective (Aspirin), or the selective COX2 inhibitor (SC236) in vivo. Here we demonstrate that NSAID treatment synergistically increased the effect of mEHT in 4T1 TNBC. Tumor weight and tumor volume (measured by ultrasound and a digital caliper) were lowest, and the tumor destruction ratio (TDR) was the highest in the combination treated (NSAID + mEHT) groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3 (cC3), suggesting an important role for apoptosis. Similarly, in the B16F10 melanoma model, lung nodules were significantly less in mice treated with mEHT + Aspirin.
Conclusions
NSAIDs effectively enhance the mEHT anti-tumor effect in TNBC and melanoma cancer models; they increase tumor destruction, where apoptosis may play a role. Disecting the exact molecular mechanisms further is under our current investigation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Semmelweis University.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
35P - SAT-122: A potential first-in-class, potent, small-molecule disruptor of RAD51-BRCA2, attenuates RAD51 foci formation and tumor progression in preclinical models
Presenter: Sukanya Patra
Session: Poster session 09
36P - Molecular assessment of clinical antitumour therapeutics utilising established pancreatic ductal adenocarcinoma patient-derived models
Presenter: Young-Ah Suh
Session: Poster session 09
37P - Nischarin can be a target for stromal normalisation in pancreatic ductal adenocarcinoma
Presenter: Jelena Grahovac
Session: Poster session 09
38P - Effects of antiemetics on zolbetuximab-induced gastric injury and emesis frequency in ferrets
Presenter: Jane Weng
Session: Poster session 09
39P - Casein kinase 2 modulates epithelial–mesenchymal transition through helicobacter pylori CagA-dependent pathway in gastric cancer cells
Presenter: SODAM LEE
Session: Poster session 09
40P - Bioinformatic evaluation of the transcriptomic and immunologic profile of prostate tumors with high expression of kallikrein-2
Presenter: Irene Moreno
Session: Poster session 09
42P - Developing a photodynamic therapy strategy targeted to endometrial cancer stem cells
Presenter: Beatriz Serambeque
Session: Poster session 09
43P - Looking for therapeutic targets on the proteome profile of endometrial cancer stem cells
Presenter: Mafalda Laranjo
Session: Poster session 09
44P - PAUF as a target for treatment of high PAUF-expressing ovarian cancer
Presenter: Junghyun Cho
Session: Poster session 09