Abstract 27P
Background
Unlike other types of cancer that are sensitive to single-target agents, such as lung cancer and chronic myeloid leukemia, colorectal cancer (CRC) involves a complex network of interactions between activating oncogenes and is thus more likely to respond to multi-target therapy. Approximately 10% of CRC mutations are within the BRAF gene, the most frequent being BRAFV600E. While this mutation can be targeted with relatively high efficacy by single-target therapies, there exists a cohort of atypical BRAF mutations that confer higher resistance to currently available treatments. Furthermore, a large proportion of these atypical BRAF mutations are poorly understood.
Methods
We used principal component analysis and semi-supervised clustering learning methods to classify mutants unassigned by the previous BRAF classification system. By leveraging previously established protein-protein networks, we overlaid them with gene essentiality data to successfully classify 84 new BRAF mutations. We then evaluated the oncogenic potential of the newly classified atypical class-2 or -3 BRAF mutations compared to wild-type and class-1 BRAF mutations to validate that our extended system was consistent with the previously established BRAF classes. We also performed a network analysis to determine which genes were co-mutated for each BRAF class.
Results
Cell viability analysis of the BRAF-mutant Ba/F3 cells yielded no significant differences in the median AUC values between the new and old classification systems. Several key genes (including PIK3CA, EGFR, and MEK) were identified as potential drug targets (IC 50: 0.1 μM) for cell lines with class-2 and -3 atypical BRAF mutations. We found that atypical BRAF mutations have significantly more positive CERES scores than class-1 mutations and thus need to partner with other oncogenes to drive oncogenesis due to their lower oncogenic potential.
Conclusions
In conclusion, we extended the previous Yao classification system to establish a more comprehensive BRAF-mutant classification system, Yao Classification System Plus, that encompasses more atypical BRAF mutations. This allows for greater therapeutic options to target cells carrying these previously uncharacterized mutations.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of Texas MD Anderson Cancer Center.
Funding
National Cancer Institute , the Cancer Center Support Grant, and the Cancer Prevention & Research Institute of Texas.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4P - Spatially resolved transcriptome elucidates bidirectional tertiary lymphoid structure interacts with tumor microenvironment of non-small cell lung cancer
Presenter: Xin Zhao
Session: Poster session 09
5P - Tertiary lymphoid structures (TLS) presence and stromal blood vessels heterogeneity differentially influence recurrence, lymphovascular, and perineural invasion in breast cancer molecular subtypes
Presenter: Andrei Cosma
Session: Poster session 09
6P - Combined single-cell and spatially resolved mapping of the human lymph node ecosystem reveals fundamental principles of lymphoma tissue organization
Presenter: Daniel Hübschmann
Session: Poster session 09
7P - Engineered salmonella blocks cancer metastasis by activating NK cells in an IFN-γ-dependent manner
Presenter: JIANDONG HUANG
Session: Poster session 09
8P - Modulating tumor microenvironment using a VEGF active immunotherapeutic approach in gastrointestinal tumors: Beyond angiogenesis modulation
Presenter: Mónica Bequet-Romero
Session: Poster session 09
9P - Identification of a μCT-based radiomic signature of CD8+ tumour infiltrating lymphocytes in an orthotopic murine model
Presenter: Giulia Mazzaschi
Session: Poster session 09
10P - Cancer cells induce intracellular gap formation in sinusoidal endothelial cells to produce liver metastasis through pro-inflammatory paracrine mechanisms
Presenter: Hoang Truong
Session: Poster session 09
11P - Targeting stromal cells to reverse immune suppression in triple-negative breast cancer
Presenter: Julia Chen
Session: Poster session 09
12P - Immuno-suppressive role of tumour-derived GDF-15 on myeloid cells
Presenter: Christine Schuberth-Wagner
Session: Poster session 09
13P - Disrupting the immunosuppressive tumor microenvironment using genetically engineered macrophages for triple-negative breast cancer therapy
Presenter: Sabrina Traxel
Session: Poster session 09