Abstract 27P
Background
Unlike other types of cancer that are sensitive to single-target agents, such as lung cancer and chronic myeloid leukemia, colorectal cancer (CRC) involves a complex network of interactions between activating oncogenes and is thus more likely to respond to multi-target therapy. Approximately 10% of CRC mutations are within the BRAF gene, the most frequent being BRAFV600E. While this mutation can be targeted with relatively high efficacy by single-target therapies, there exists a cohort of atypical BRAF mutations that confer higher resistance to currently available treatments. Furthermore, a large proportion of these atypical BRAF mutations are poorly understood.
Methods
We used principal component analysis and semi-supervised clustering learning methods to classify mutants unassigned by the previous BRAF classification system. By leveraging previously established protein-protein networks, we overlaid them with gene essentiality data to successfully classify 84 new BRAF mutations. We then evaluated the oncogenic potential of the newly classified atypical class-2 or -3 BRAF mutations compared to wild-type and class-1 BRAF mutations to validate that our extended system was consistent with the previously established BRAF classes. We also performed a network analysis to determine which genes were co-mutated for each BRAF class.
Results
Cell viability analysis of the BRAF-mutant Ba/F3 cells yielded no significant differences in the median AUC values between the new and old classification systems. Several key genes (including PIK3CA, EGFR, and MEK) were identified as potential drug targets (IC 50: 0.1 μM) for cell lines with class-2 and -3 atypical BRAF mutations. We found that atypical BRAF mutations have significantly more positive CERES scores than class-1 mutations and thus need to partner with other oncogenes to drive oncogenesis due to their lower oncogenic potential.
Conclusions
In conclusion, we extended the previous Yao classification system to establish a more comprehensive BRAF-mutant classification system, Yao Classification System Plus, that encompasses more atypical BRAF mutations. This allows for greater therapeutic options to target cells carrying these previously uncharacterized mutations.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of Texas MD Anderson Cancer Center.
Funding
National Cancer Institute , the Cancer Center Support Grant, and the Cancer Prevention & Research Institute of Texas.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
78P - Peroxiredoxin-1 knockout negatively affects the viability of ph+ B-cell acute lymphoblastic leukemia cells and sensitizes them to tyrosine kinase inhibitors
Presenter: Jaromir Hunia
Session: Poster session 09
79P - Co-delivered crizotinib and gefitinib based on nanoparticle for synergically overcoming resistance lung adenocarcinoma treatment
Presenter: Haiyu Zhou
Session: Poster session 09
80P - Steroidal oximes: A new potential therapeutic approach for cancer treatment
Presenter: Mafalda Laranjo
Session: Poster session 09
81P - miR-23b and -133a role on TRAIL-induced apoptosis pathway components expression and TRAIL sensitization in lung adenocarcinoma cells
Presenter: Denise Leite
Session: Poster session 09
83P - Impact of VHL-associated tumor treatment on mental health: An international patient survey
Presenter: Othon Iliopoulos
Session: Poster session 09
84P - Microenvironment immune differences between sexes in multiple myeloma
Presenter: Maria de los Angeles Clavo
Session: Poster session 09
85P - In silico evaluation of the transcriptomic and immunologic profile of lung adenocarcinomas with deletions or disruptive mutations of SMARCA4
Presenter: Ester Garcia Lorenzo
Session: Poster session 09
86P - Effect of chemotherapy-induced autophagic secretome on natural killer cell activity
Presenter: Ayfer Karlitepe
Session: Poster session 09
87P - WIP1 phosphatase promotes etoposide induced autophagy in medulloblastoma and neuroblastoma
Presenter: Hatice Pilevneli
Session: Poster session 09
88P - PPM1D/WIP1 phosphatase mediates basal and genotoxic stress-induced autophagy via ULK-1 de-phosphorylation
Presenter: Ceylan Ak
Session: Poster session 09