Abstract 178P
Background
IO revolutionized NSCLC treatment paradigm, but only a relatively small proportion of pts shows benefits. Since available biomarkers demonstrated only limited predictive efficacy, novel models are urgently needed. Radiomics, through machine learning (ML) and deep learning (DL) techniques, allows to extract features from raw images to build predictive models. This study aimed to develop and test 2 type of radiomics models in predicting IO efficacy on advanced NSCLC, one ML-based, other through an end-to-end DL pipeline.
Methods
We collected CT scans and RWD from 295 consecutive pts with advanced NSCLC pts receiving any-line anti-PD(L)1 therapy either alone or in combination with CHT at our Institution from 23/04/2013 to 12/05/2022 within APOLLO 11 study. ML workflow consisted of image preprocessing, feature extraction, 3 step feature selection, correlation, algorithm training and evaluation of 6 ML classifiers. ML models were trained using radiomics +/- RWD. Models were evaluated on independent test set and SHAP values used to explain model predictions. We compared developed model with novel DL end-to-end model, a 3D convolutional neural network.
Results
15 image features were selected to build radiomic model, achieving ACC of 0.61 and AUC of 0.58. Combining it with additional RWD features, accuracy and AUC of LR reached 0.71 and 0.76. SHAP analysis for best-performing models showed RW (ECOG PS, therapy line, concomitant CHT, PDL1) and radiomics features (tumor shape and intensity/distribution of gray-level values) that most influenced models. DL model achieved an ACC of 0.69 and a Loss value of 0.773. A high proportion of higher GLSZM and a high value of large area size zones were associated to a higher response to therapy.
Conclusions
The developed and validated ML-based model includes radiomic and RW features, demonstrating ability to predict IO efficacy and potential future applicability for treatment selection. We firstly demonstrated that a radiomics-based DL model outperform the all radiomics ML-based models highlighting the importance of this approach in image data. SHAP analysis provided valuable insights to explore features that most influenced the models' predictions
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Fondazione IRCCS Istituto Nazionale Tumori di Milano.
Funding
Has not received any funding.
Disclosure
F.G.M. De Braud: Financial Interests, Personal, Advisory Role: Roche. A. Prelaj: Financial Interests, Funding: Roche, AstraZeneca, BMS. All other authors have declared no conflicts of interest.
Resources from the same session
197P - Clinical benefit of HER2-targeted therapies versus prior chemotherapy in refractory HER2 expressing and mutant gastrointestinal malignancies
Presenter: Vishesh Khanna
Session: Poster session 01
198P - Detection of ERBB2 (HER2) amplification by next-generation sequencing (NGS) in patients (pts) with gastrointestinal (GI) cancer
Presenter: Yunxiang Qi
Session: Poster session 01
199P - Novel machine learning (ML) algorithm to predict immunotherapy response in small cell (SCLC) and non-small cell (NSCLC) lung cancer
Presenter: Lakshya Sharma
Session: Poster session 01
200P - Precise tumor & patient selection for CDR404: A bispecific & bivalent MAGE-A4 T cell engager
Presenter: Giorgia Giacomazzi
Session: Poster session 01
201P - Afatinib for EGFR, HER2 or HER3 mutated solid tumors: A phase II Belgian precision study
Presenter: Lore Decoster
Session: Poster session 01
202P - Participant perceptions and mammography adherence from DETECT-A: The first prospective interventional trial of a multi-cancer early detection (MCED) blood test
Presenter: Nicholas Papadopoulos
Session: Poster session 01
203P - Genomic characterization of sporadic MET amplified non-small cell lung cancer (NSCLC) and association with real-world outcomes
Presenter: Ryan Gentzler
Session: Poster session 01
204P - Performance assessment of a comprehensive genomic profiling (CGP) NGS kit across multiple study laboratories
Presenter: Jonathan Choi
Session: Poster session 01
205P - A novel immunoprecipitation/PCR method for detection of plasma cfDNA fragments selectively occupied by CTCF in cancer
Presenter: Dorian Pamart
Session: Poster session 01
206P - WAYFIND-R: A global, real-world database of patients (pts) with a solid tumour profiled with next-generation sequencing (NGS)
Presenter: Jean-Yves Blay
Session: Poster session 01