Abstract 178P
Background
IO revolutionized NSCLC treatment paradigm, but only a relatively small proportion of pts shows benefits. Since available biomarkers demonstrated only limited predictive efficacy, novel models are urgently needed. Radiomics, through machine learning (ML) and deep learning (DL) techniques, allows to extract features from raw images to build predictive models. This study aimed to develop and test 2 type of radiomics models in predicting IO efficacy on advanced NSCLC, one ML-based, other through an end-to-end DL pipeline.
Methods
We collected CT scans and RWD from 295 consecutive pts with advanced NSCLC pts receiving any-line anti-PD(L)1 therapy either alone or in combination with CHT at our Institution from 23/04/2013 to 12/05/2022 within APOLLO 11 study. ML workflow consisted of image preprocessing, feature extraction, 3 step feature selection, correlation, algorithm training and evaluation of 6 ML classifiers. ML models were trained using radiomics +/- RWD. Models were evaluated on independent test set and SHAP values used to explain model predictions. We compared developed model with novel DL end-to-end model, a 3D convolutional neural network.
Results
15 image features were selected to build radiomic model, achieving ACC of 0.61 and AUC of 0.58. Combining it with additional RWD features, accuracy and AUC of LR reached 0.71 and 0.76. SHAP analysis for best-performing models showed RW (ECOG PS, therapy line, concomitant CHT, PDL1) and radiomics features (tumor shape and intensity/distribution of gray-level values) that most influenced models. DL model achieved an ACC of 0.69 and a Loss value of 0.773. A high proportion of higher GLSZM and a high value of large area size zones were associated to a higher response to therapy.
Conclusions
The developed and validated ML-based model includes radiomic and RW features, demonstrating ability to predict IO efficacy and potential future applicability for treatment selection. We firstly demonstrated that a radiomics-based DL model outperform the all radiomics ML-based models highlighting the importance of this approach in image data. SHAP analysis provided valuable insights to explore features that most influenced the models' predictions
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Fondazione IRCCS Istituto Nazionale Tumori di Milano.
Funding
Has not received any funding.
Disclosure
F.G.M. De Braud: Financial Interests, Personal, Advisory Role: Roche. A. Prelaj: Financial Interests, Funding: Roche, AstraZeneca, BMS. All other authors have declared no conflicts of interest.
Resources from the same session
165P - Correlation between trophoblast cell-surface antigen-2 (Trop-2) expression and pathological complete response (pCR) in HER2-positive early breast cancer (EBC): A sub analysis of PHERGain trial
Presenter: Maria Gion Cortes
Session: Poster session 01
166P - Metabolomic prediction of breast cancer treatment toxicities
Presenter: Max Piffoux
Session: Poster session 01
167P - A tumor immune microenvironment-based model for prediction of everolimus efficacy in premenopausal women with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: Preliminary results from MIRACLE trial
Presenter: Tan Yujing
Session: Poster session 01
168P - HUWE1 inhibition has tumor suppressive effect in triple-negative breast cancer cell lines by modulating glycolytic and immune modulatory markers
Presenter: SHRUTI KAHOL
Session: Poster session 01
169P - Integration of metabolomics and transcriptomics to reveal potential biomarkers associated with treatment response of neoadjuvant therapy in HER2+ breast cancer
Presenter: Ningning Zhang
Session: Poster session 01
170P - Clinical significance and functional role of GPR56 (ADGRG1) in breast cancer
Presenter: Haizhu Chen
Session: Poster session 01
172P - T cell-derived circulating DNA and tumour inflammatory microenvironment in EGFR-mutant advanced non-small cell lung cancer: Correlation with the outcome of EGFR TKI treatment
Presenter: Nicha Zungsontiporn
Session: Poster session 01
173P - Expression of programmed death-ligand 1 and EGFR on circulating tumour cells in advanced lung cancer patients
Presenter: Jayant Khandare
Session: Poster session 01
174P - Frequency and prognostic value of circulating tumor cells in cancer of unknown primary
Presenter: Maria Pouyiourou
Session: Poster session 01