Abstract 332P
Background
Neoadjuvant chemotherapy (NAC) has been a standard treatment for locally advanced breast cancer (BC). However, the high heterogeneity of BC results in various tumor response. Therefore, there is a growing need for early assessment of tumor response, particularly for insensitive BC, to guide personalized treatment. We aim to develop a longitudinal radiomics multitask model to accurately predict RCB score in the early stage of NAC for breast cancer.
Methods
A total of 1048 patients with breast cancer receiving NAC across four institutions were retrospectively enrolled. We collected longitudinal MRI sequences at the pre-NAC and mid-NAC timepoints, and extracted 21804 radiomics features per patient. We used a multitask learning strategy to predict RCB score (RCB 0-I, II and III). The Mann-Whitney U-test, Spearman analysis, the least absolute shrinkage and selection operator regression and Boruta method were used to perform feature selection. We developed various base machine learning models, followed by an ensemble stacking method to integrate the base model outputs. The multitask learning model was subsequently verified in three independent external validation cohorts.
Results
Of the total patients, 442 (42.18%) reached RCB 0-I, 462 (44.08%) reached RCB II and 144 (13.74%) reached RCB III. 17 and 19 significant features were selected for two independent tasks. For identifying RCB 0-I and RCB II-III, the multitask model reached an area under the curve (AUC) of 0.932 in primary cohort, and AUCs of 0.890, 0.919 and 0.911 in the external validation cohorts. It also identified RCB II and RCB III with an AUC of 0.916 in primary cohort, and AUCs of 0.870, 0.899 and 0.871 in external validation cohorts.
Conclusions
The longitudinal radiomics multitask learning model is a noninvasive tool to predict RCB score for breast cancer, and help clinical decision-making in the early stage of NAC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
323P - Macrophage population analysis of the breast cancer microenvironment within the context of seroma formation after mastectomy (SerMa pilot study)
Presenter: Felicitas Schneider
Session: Poster session 02
325P - Impact of breast tumour location on axillary nodal involvement, chemotherapy use, and survival
Presenter: Yang Xu
Session: Poster session 02
326P - Sentinel lymph node mapping in breast cancer: Evaluating the dual-tracer method with indocyanine green and radioisotope
Presenter: Ava Kwong
Session: Poster session 02
328P - Frequency of radiotherapy-induced malignancies in Li-Fraumeni syndrome patients with early breast cancer and influence of the radiotherapy technique
Presenter: Vanessa Petry
Session: Poster session 02
329P - Pulmonary function and lung fibrosis up to 12 years after breast cancer radiotherapy
Presenter: Jarle Karlsen
Session: Poster session 02
330P - Effect of radiotherapy in deep inspiration in patients with left breast cancer: Does the size of the target area affect the dose for the most crucial organs at risk?
Presenter: Zoltan Locsei
Session: Poster session 02
331P - miR-21 and miR-34a as biomarkers of radiotherapy skin adverse events in ductal carcinoma in situ
Presenter: Tanja Marinko
Session: Poster session 02
333P - Evaluation of a composite PET/CT and HER2 tissue-based biomarker to predict response to neoadjuvant HER2-directed therapy in early breast cancer (TBCRC026)
Presenter: Maeve Hennessy
Session: Poster session 02