Abstract 332P
Background
Neoadjuvant chemotherapy (NAC) has been a standard treatment for locally advanced breast cancer (BC). However, the high heterogeneity of BC results in various tumor response. Therefore, there is a growing need for early assessment of tumor response, particularly for insensitive BC, to guide personalized treatment. We aim to develop a longitudinal radiomics multitask model to accurately predict RCB score in the early stage of NAC for breast cancer.
Methods
A total of 1048 patients with breast cancer receiving NAC across four institutions were retrospectively enrolled. We collected longitudinal MRI sequences at the pre-NAC and mid-NAC timepoints, and extracted 21804 radiomics features per patient. We used a multitask learning strategy to predict RCB score (RCB 0-I, II and III). The Mann-Whitney U-test, Spearman analysis, the least absolute shrinkage and selection operator regression and Boruta method were used to perform feature selection. We developed various base machine learning models, followed by an ensemble stacking method to integrate the base model outputs. The multitask learning model was subsequently verified in three independent external validation cohorts.
Results
Of the total patients, 442 (42.18%) reached RCB 0-I, 462 (44.08%) reached RCB II and 144 (13.74%) reached RCB III. 17 and 19 significant features were selected for two independent tasks. For identifying RCB 0-I and RCB II-III, the multitask model reached an area under the curve (AUC) of 0.932 in primary cohort, and AUCs of 0.890, 0.919 and 0.911 in the external validation cohorts. It also identified RCB II and RCB III with an AUC of 0.916 in primary cohort, and AUCs of 0.870, 0.899 and 0.871 in external validation cohorts.
Conclusions
The longitudinal radiomics multitask learning model is a noninvasive tool to predict RCB score for breast cancer, and help clinical decision-making in the early stage of NAC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
292P - Unlocking the potential of circulating miRNAs in predicting response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis
Presenter: Paola Tiberio
Session: Poster session 02
294P - Prognostic significance and evolution of HER2 zero, HER2 low and HER2 positive in breast cancer after neoadjuvant treatment
Presenter: Tong Wei
Session: Poster session 02
295P - ESR1, PGR, ERBB2, MKI67 single gene analysis in neoadjuvant-treated early breast cancer patients
Presenter: Rebekks Spiller
Session: Poster session 02
296P - Identification of metabolism-related therapeutic targets to improve response to neoadjuvant chemotherapy in early breast cancers
Presenter: Françoise Derouane
Session: Poster session 02
297P - Prognostic and predictive impact of NOTCH1 in early breast cancer
Presenter: Julia Engel
Session: Poster session 02
298P - Association of luminal-androgen receptor (LAR) subtype with low HER2 in triple-negative breast cancer
Presenter: Lee Min Ji
Session: Poster session 02
299P - Single-cell transcriptomic analysis reveals specific luminal and T cell subpopulations associated with response to neoadjuvant therapy in early-stage breast cancer
Presenter: Xiaoxiao Wang
Session: Poster session 02
300P - Correlation of PD-L1 protein and mRNA expression and their prognostic impact in triple-negative breast cancer
Presenter: Kathleen Schüler
Session: Poster session 02
301P - Epigenetic modifications of IL-17 gene in patients with early breast cancer and healthy controls
Presenter: Ljubica Radmilovic Varga
Session: Poster session 02
302P - Clinicopathological features and outcomes of pregnancy associated breast cancer: Case control study -single institution experience
Presenter: Nashwa Kordy
Session: Poster session 02