Abstract 336P
Background
For surgically resected breast cancer samples, it is challenging to perform specimen sampling by visual inspection, especially when the tumor bed shrinks after neoadjuvant therapy in breast cancer.
Methods
We developed a dual-mode near-infrared multispectral imaging system (DNMIS) to obtain richer sample tissue information by acquiring reflection and transmission images covering visible to NIR-II spectrum range (400–1700 nm). Additionally, artificial intelligence (AI) was used to segment the rich multispectral data. 80 breast cancer samples were collected to verify the advantage of DNMIS in assisting pathologists to identify tumor beds.
Results
DNMIS demonstrated better tissue contrast and eliminated the interference of surgical inks on the breast tissue surface, helping pathologists find the tumor area which is easy to be overlooked with visual inspection. Statistically, AI-powered DNMIS provided a higher tumor sensitivity (95.9% vs visual inspection 88.4% and X-rays 92.8%), especially for breast samples after neoadjuvant therapy (90.3% vs visual inspection 68.6% and X-rays 81.8%).
Conclusions
We infer that DNMIS can improve the breast tumor specimen sampling work by helping pathologists avoid missing out tumor foci.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
272P - Primary prevention of bone fractures in patients (pts) with hormone receptor (HR)+ early breast cancer (EBC) during adjuvant hormonal therapy (HT): The predict & prevent project (P&P)
Presenter: Stefania Gori
Session: Poster session 02
273P - A preoperative window-of-opportunity (WOO) study of imlunestrant in ER+, HER2- early breast cancer (EBC): Final analysis from EMBER-2
Presenter: Patrick Neven
Session: Poster session 02
274P - Impact of dose reductions on efficacy of adjuvant abemaciclib for patients with high-risk early breast cancer (EBC): Analyses from the monarchE study
Presenter: Joyce O'Shaughnessy
Session: Poster session 02
275P - Clinical and molecular impact of neoadjuvant chemotherapy (NACT) or endocrine therapy (NET) on hormone receptor positive (HR+)/HER2-negative (-) breast cancer (BC)
Presenter: Francesco Schettini
Session: Poster session 02
276P - Development and external validation of an artificial intelligence (AI)-based machine learning model (ML) for predicting pathological complete response (pCR) in hormone-receptor (HoR)-positive/HER2-negative early breast cancer (EBC) undergoing neoadjuvant chemotherapy (NCT)
Presenter: Luca Mastrantoni
Session: Poster session 02
277P - Fat body mass independently predicts incident vertebral fractures in breast cancer patients given adjuvant aromatase inhibitor therapy and denosumab
Presenter: Greta Schivardi
Session: Poster session 02
278P - Association between tamoxifen and endoxifen plasma levels and clotting proteins in patients with primary breast cancer
Presenter: Daan van Dorst
Session: Poster session 02
279P - Early changes in bone turnover biomarkers during AI therapy are related to loss bone mineral density, data of the B-ABLE cohort
Presenter: Tamara Martos Cardenas
Session: Poster session 02
280P - Adjuvant aromatase inhibitors in patients with PIK3CA mutation early breast cancer
Presenter: Kristin Reinhardt
Session: Poster session 02