Abstract 1251P
Background
Abnormal methylation of cell-free DNA (cfDNA) enables the diagnosis of lung cancer. In this study, we aimed to identify the best methylation marker for distinguishing lung cancer from healthy individuals, and then develop a deep learning algorithm using methylation and fragment size profiles (MFS) of cfDNA in that region.
Methods
We obtained 828 tissue samples from lung cancer patients, 74 adjacent normal tissue samples, and 656 samples of normal whole blood from the TCGA database and generated genome-wide tissue and plasma methylome data from healthy individuals and lung cancer patients using 215 Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and 24 Enzymatic Methyl-seq (EM-seq). A total of 366 DNA methylation markers were selected based on the methylation profiling of these datasets, and a targeted EM-seq panel was designed on these markers. The panel was used to produce 142 lung cancer samples (stage I: 26%, II: 11%, III: 42%, IV: 11%, unknown: 11%) and 56 healthy samples. MFS was trained on hyper- and hypo-methylated regions using convolutional neural networks. To confirm the limit of detection (LOD), sequencing was performed on diluted samples of healthy and lung cancer cfDNA with different ratios (tumor fractions of 0.1%, 0.5%, and 1%).
Results
We found that the performance was better in hypo-methylated regions than in hyper-methylated regions. The lung cancer detection performance in the test and external sets reached an accuracy of 81.5% (CI: 78.2% to 87.0%) and an AUC of 0.87 (CI: 0.83 to 0.94). At a specificity of 80%, the sensitivity for cancer detection was 77.5% (CI: 67.3% to 99.4%). The sensitivity for Lung Adenocarcinoma and Lung Squamous Cell Carcinoma at 80% specificity was 61.1% (CI: 42.7% to 94.4%) and 85.7% (CI: 71.4% to 100.0%), respectively. With serial dilution results, we detected down to 0.1% tumor fraction with a specificity of 80%.
Conclusions
This study developed and validated a methylation marker and deep learning model that can distinguish between lung cancer patients and healthy individuals using methylation and size information. This approach provides a sensitive and accurate diagnostic tool for lung cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
GC Genome.
Funding
Ministry of Health and Welfare.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14
1230P - hPG80 (circulating progastrin) is a new blood-based biomarker for diagnosis of early-stage non-small cell lung cancers
Presenter: Paul Hofman
Session: Poster session 14
1231P - Machine learning prediction of the case-fatality of COVID-19 and risk factors for adverse outcomes in patients with non-small cell lung cancer
Presenter: Yeji Jung
Session: Poster session 14
1232P - Analytic analysis of PanSeer7, a targeted bisulfite sequencing assay for blood-based multi-cancer detection for cancer early detection and tissue-of-origin identification
Presenter: Xinrong Yang
Session: Poster session 14
1233P - Accurate prediction of gastrointestinal cancer tissue of origin using comprehensive plasma cell-free DNA fragmentomics features
Presenter: Xinrong Yang
Session: Poster session 14
1234P - HistoMate: Automated preprocessing software for digital histopathology image to enhance deep learning
Presenter: Jinok Lee
Session: Poster session 14
1235P - Enrichment of rare cancers in pragmatic precision cancer medicine trial: Experience from IMPRESS-Norway
Presenter: Aaslaug Helland
Session: Poster session 14
1236P - Feasibility of online symptom monitoring to detect lung cancer relapse in Poland
Presenter: Ewa Pawlowska
Session: Poster session 14
1237P - Design and validation of a custom next-generation sequencing panel in melanoma, glioma and gastrointestinal stromal tumor
Presenter: Xiaoyan Zhou
Session: Poster session 14
1238P - Detecting driver mutations by AmoyDx 11-gene PCR with high concordance with next-generation sequencing in Chinese non-small cell lung cancer patients
Presenter: Dongmei Lin
Session: Poster session 14