Abstract 1251P
Background
Abnormal methylation of cell-free DNA (cfDNA) enables the diagnosis of lung cancer. In this study, we aimed to identify the best methylation marker for distinguishing lung cancer from healthy individuals, and then develop a deep learning algorithm using methylation and fragment size profiles (MFS) of cfDNA in that region.
Methods
We obtained 828 tissue samples from lung cancer patients, 74 adjacent normal tissue samples, and 656 samples of normal whole blood from the TCGA database and generated genome-wide tissue and plasma methylome data from healthy individuals and lung cancer patients using 215 Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and 24 Enzymatic Methyl-seq (EM-seq). A total of 366 DNA methylation markers were selected based on the methylation profiling of these datasets, and a targeted EM-seq panel was designed on these markers. The panel was used to produce 142 lung cancer samples (stage I: 26%, II: 11%, III: 42%, IV: 11%, unknown: 11%) and 56 healthy samples. MFS was trained on hyper- and hypo-methylated regions using convolutional neural networks. To confirm the limit of detection (LOD), sequencing was performed on diluted samples of healthy and lung cancer cfDNA with different ratios (tumor fractions of 0.1%, 0.5%, and 1%).
Results
We found that the performance was better in hypo-methylated regions than in hyper-methylated regions. The lung cancer detection performance in the test and external sets reached an accuracy of 81.5% (CI: 78.2% to 87.0%) and an AUC of 0.87 (CI: 0.83 to 0.94). At a specificity of 80%, the sensitivity for cancer detection was 77.5% (CI: 67.3% to 99.4%). The sensitivity for Lung Adenocarcinoma and Lung Squamous Cell Carcinoma at 80% specificity was 61.1% (CI: 42.7% to 94.4%) and 85.7% (CI: 71.4% to 100.0%), respectively. With serial dilution results, we detected down to 0.1% tumor fraction with a specificity of 80%.
Conclusions
This study developed and validated a methylation marker and deep learning model that can distinguish between lung cancer patients and healthy individuals using methylation and size information. This approach provides a sensitive and accurate diagnostic tool for lung cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
GC Genome.
Funding
Ministry of Health and Welfare.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1774P - PC-PEP, a comprehensive daily six-month home-based prostate cancer: Patient empowerment program improves quality of life, physical fitness, and urinary function outcomes among prostate cancer patients with localized disease - Secondary analyses of a randomized clinical trial
Presenter: Gabriela Ilie
Session: Poster session 14
1775P - A newly-developed deep-learning algorithm: NAFNet outperforms ResNet50 for predicting adverse pathology events and biochemical recurrence time using MRI from prostate cancer patients
Presenter: Zheng Liu
Session: Poster session 14
1776P - Body composition in adult life and prostate cancer (PCa) incidence and mortality: The PROCA-life study
Presenter: Martin Støyten
Session: Poster session 14
1777P - Enzalutamide (enza) monotherapy for the treatment (tx) of prostate cancer with high-risk biochemical recurrence (BCR): EMBARK secondary endpoints
Presenter: Ugo De Giorgi
Session: Poster session 14
1778P - Treatment (tx) of high-risk biochemically recurrent prostate cancer with enzalutamide (enza) in combination with leuprolide acetate (LA): Secondary endpoints from EMBARK
Presenter: Stephen Freedland
Session: Poster session 14
1779P - PSMA guided approach for bIoCHEmical relapse after prostatectomy-PSICHE trial
Presenter: Giulio Francolini
Session: Poster session 14
1780P - The health inequality impact of darolutamide for non-metastatic castration-resistant prostate cancer: A distributional cost-effectiveness analysis
Presenter: Jeroen Jansen
Session: Poster session 14
1782P - Prostate radiotherapy reduces long-term risk of obstructive uropathy in metastatic hormone sensitive prostate cancer (mHSPC): Results from the STAMPEDE M1|RT comparison
Presenter: Craig Jones
Session: Poster session 14
1783P - PROSTRATEGY: A SOGUG randomized trial of androgen deprivation therapy (ADT) plus docetaxel (dct) +/- nivolumab (nivo) or ipilimumab-nivolumab (ipi-nivo) in high-volume metastatic hormone-sensitive prostate cancer (hvHSPCa) - Efficacy results from the pilot phase
Presenter: Jose Arranz Arija
Session: Poster session 14