Abstract 1216P
Background
Employing a rapid liquid biopsy platform that can support clinicians in the diagnosis of different cancers, particularly for patients who develop cancers not targeted in current screening programs, would cause a paradigm shift in cancer diagnostics. Current liquid biopsies focus on single tumor derived biomarkers, such as circulating tumor DNA (ctDNA), which limits test sensitivity, especially for early-stage cancers that do not shed enough genetic material.
Methods
The Dxcover® Cancer Liquid Biopsy has been assessed upon its ability to predict individual cancers in organ-specific classifications: brain, breast, colorectal, kidney, lung, ovarian, pancreatic, and prostate cancer. The test uses Fourier transform infrared (FTIR) spectroscopy to build spectral profiles of serum samples, and machine learning algorithms to predict disease status. We also made a further exploratory evaluation of the ability to differentiate the signature from any one of the 8 cancers from non-cancer patient samples. We assessed the test performance when the cancer samples were grouped together to mimic patients with non-specific symptoms where the cancer site was uncertain. Additionally, we have examined non-generative data augmentation methods to improve machine learning performance.
Results
Area under the receiver operating characteristic curve (AUROC) values were calculated for 8 cancer types v symptomatic non-cancer controls: most classifiers achieved AUROC values above 0.85. The cancer v asymptomatic non-cancer classification detected 64% of stage I cancers when specificity was 99% (overall sensitivity 57%). When tuned for higher sensitivity, this model identified 99% of stage I cancers (with specificity 59%). For the colorectal cancer dataset, data augmentation using a WGAN led to an increase in AUROC from 0.91 to 0.96, demonstrating the impact data augmentation can have on deep learning performance, which could be useful when the amount of real data available for model training is limited.
Conclusions
This spectroscopic blood test can effectively detect early-stage cancer, and could facilitate the requisite earlier diagnosis when treatment can be more effective.
Clinical trial identification
Legal entity responsible for the study
Dxcover Limited.
Funding
Dxcover Limited.
Disclosure
M.J. Baker: Financial Interests, Personal, Full or part-time Employment: Dxcover Limited; Financial Interests, Personal, Leadership Role: Dxcover Limited; Financial Interests, Personal, Stocks or ownership: Dxcover Limited. J.M. Cameron, A. Sala, G. Antoniou, J.J.A. Conn, R.G. McHardy: Financial Interests, Personal, Full or part-time Employment: Dxcover Limited. D.S. Palmer: Financial Interests, Personal, Research Funding, Dxcover, GSK, Endophotonics: Dxcover Limited; Financial Interests, Personal, Stocks or ownership: Dxcover Limited; Financial Interests, Personal, Leadership Role: Dxcover Limited; Financial Interests, Personal, Full or part-time Employment: Dxcover Limited; Financial Interests, Personal, Advisory Role: Dxcover Limited.
Resources from the same session
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1244P - AI-based accurate PD-L1 IHC assessment in non-small cell lung cancer across multiple sites and scanners
Presenter: Ramona Erber
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14
1250P - Assessing lung carcinoma: A retrospective study on volume evaluation, consolidation and infiltration using chest OMX
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14