Abstract 1216P
Background
Employing a rapid liquid biopsy platform that can support clinicians in the diagnosis of different cancers, particularly for patients who develop cancers not targeted in current screening programs, would cause a paradigm shift in cancer diagnostics. Current liquid biopsies focus on single tumor derived biomarkers, such as circulating tumor DNA (ctDNA), which limits test sensitivity, especially for early-stage cancers that do not shed enough genetic material.
Methods
The Dxcover® Cancer Liquid Biopsy has been assessed upon its ability to predict individual cancers in organ-specific classifications: brain, breast, colorectal, kidney, lung, ovarian, pancreatic, and prostate cancer. The test uses Fourier transform infrared (FTIR) spectroscopy to build spectral profiles of serum samples, and machine learning algorithms to predict disease status. We also made a further exploratory evaluation of the ability to differentiate the signature from any one of the 8 cancers from non-cancer patient samples. We assessed the test performance when the cancer samples were grouped together to mimic patients with non-specific symptoms where the cancer site was uncertain. Additionally, we have examined non-generative data augmentation methods to improve machine learning performance.
Results
Area under the receiver operating characteristic curve (AUROC) values were calculated for 8 cancer types v symptomatic non-cancer controls: most classifiers achieved AUROC values above 0.85. The cancer v asymptomatic non-cancer classification detected 64% of stage I cancers when specificity was 99% (overall sensitivity 57%). When tuned for higher sensitivity, this model identified 99% of stage I cancers (with specificity 59%). For the colorectal cancer dataset, data augmentation using a WGAN led to an increase in AUROC from 0.91 to 0.96, demonstrating the impact data augmentation can have on deep learning performance, which could be useful when the amount of real data available for model training is limited.
Conclusions
This spectroscopic blood test can effectively detect early-stage cancer, and could facilitate the requisite earlier diagnosis when treatment can be more effective.
Clinical trial identification
Legal entity responsible for the study
Dxcover Limited.
Funding
Dxcover Limited.
Disclosure
M.J. Baker: Financial Interests, Personal, Full or part-time Employment: Dxcover Limited; Financial Interests, Personal, Leadership Role: Dxcover Limited; Financial Interests, Personal, Stocks or ownership: Dxcover Limited. J.M. Cameron, A. Sala, G. Antoniou, J.J.A. Conn, R.G. McHardy: Financial Interests, Personal, Full or part-time Employment: Dxcover Limited. D.S. Palmer: Financial Interests, Personal, Research Funding, Dxcover, GSK, Endophotonics: Dxcover Limited; Financial Interests, Personal, Stocks or ownership: Dxcover Limited; Financial Interests, Personal, Leadership Role: Dxcover Limited; Financial Interests, Personal, Full or part-time Employment: Dxcover Limited; Financial Interests, Personal, Advisory Role: Dxcover Limited.
Resources from the same session
1251P - Development of a deep learning algorithm for lung cancer diagnosis using methylation and fragment size profiles of cfDNA
Presenter: Jiyoung Huh
Session: Poster session 14
1252P - Quantitative cell signaling activity profiling of solid tumors to support personalized treatment in the FINPROVE basket trial: Presentation of skin tumor data
Presenter: Diederick Keizer
Session: Poster session 14
1253P - Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD)
Presenter: Marcel Trautmann
Session: Poster session 14
1254P - Retrospective analysis of brain OMX: Diagnostic tool for structural (T1) and functional connectome (RS-FMRI) analysis of brain
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14
1255P - Evaluating GPT-4 as an academic support tool for clinicians: A comparative analysis of case records from the literature
Presenter: Marcos Aurelio Fonseca Magalhaes Filho
Session: Poster session 14
1256P - Value of detection of peripheral blood circRNA based on digital PCR in the diagnosis of lung adenocarcinoma
Presenter: Jihong Zhou
Session: Poster session 14
1257P - Double heterozygous prevalence in hereditary cancer syndromes in Northern Mexico population
Presenter: Carlos Burciaga Flores
Session: Poster session 14
1258P - Does FDG PET-based radiomics have an added value for prediction of overall survival in non-small cell lung cancer?
Presenter: Andrea Ciarmiello
Session: Poster session 14
1260TiP - Enhancing lung nodule discrimination with a novel cfDNA test: The cancer signature ensemble (CSE) approach
Presenter: Young-Chul Kim
Session: Poster session 14
1773P - ICECaP-2: Validation of metastasis-free survival (MFS) as a surrogate for overall survival (OS) in localized prostate cancer (LPC) in a more contemporary era
Presenter: Wanling Xie
Session: Poster session 14