Abstract 3799
Background
Colorectal carcinoma 5-year survival ranges from 90% in patients with localized disease to 15% for those with distant metastasis. Recent research has suggested that hypermutation may predict response to immunotherapy in these tumors, but routine tests for microsatellite (MS) instability miss tumours which acquire hypermutation through other mechanisms. Tumour mutational burden (TMB) measured by next-generation sequencing has been proposed to overcome this limitation.
Methods
A commercially available next-generation sequencing panel targeting 409 cancer-relevant genes was validated for TMB measurement using 12 MS stable and 14 MS instable metastatic colorectal carcinomas, defined by routine testing of MS loci. The same panel was applied to 53 untested colorectal carcinomas with matched synchronous metastases, collected across 10 years to determine both their TMB and presence of KRAS/BRAF mutations.
Results
All samples could be sequenced at a mean coverage depth of 766x and uniformity of 97%. Mean TMB (mutations/megabase) was 8.84 for MS stable vs. 33.36 for MS instable cases in the assay validation cohort. A cut-off value of 15.56 reached 100% sensitivity (95% CI 77-100%) and 100% specificity (95% CI 73-100%). Analysis of the 10 years cohort showed KRAS mutation in 25 cases and BRAF mutation in 4; automated TMB analysis was feasible for samples collected within 7 years (n = 16), while in older specimens DNA deamination caused artefactual calls. 14 cases showed a low TMB in both primary and metastasis, one MS instable case showed high TMB in both primary and metastasis, and one MS stable case showed low TMB (11.61) in the primary and a higher TMB (21.37) in the metastasis. The mutational signature of the metastatic sample showed C>A transversions (11%), missing in the primary tumour, suggesting an additional mutational mechanism.
Conclusions
Gene panel-based TMB analysis can be performed on routine histology samples to detect both hypermutation and cancer relevant somatic mutations. Analysis of older samples may lead to deamination artifacts, which can however be revealed by mutational signature analysis.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Aldo Scarpa (ARC-NET Cancer Research Centre).
Funding
Associazione Italiana Ricerca Cancro [AIRC grant n. 12182].
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2436 - Development and Validation of an RNA-Seq Assay for Gene Fusions Detection in Formalin-Fixed Paraffin-Embedded Samples
Presenter: Hua Dong
Session: Poster Display session 3
Resources:
Abstract
5271 - A Pilot Study to Implement an Artificial Intelligence (AI) System for Gastrointestinal Cancer Clinical Trial Matching
Presenter: Zhaohui Jin
Session: Poster Display session 3
Resources:
Abstract
4787 - A Blinded Comparison of Patient Treatments to Therapeutic Options Presented by an Artificial Intelligence-based Clinical Decision-support system
Presenter: Suthida Suwanvecho
Session: Poster Display session 3
Resources:
Abstract
5744 - OncOS: scalable and accurate next-generation sequencing analytics for precision oncology and personalized patient care
Presenter: Joe Thompson
Session: Poster Display session 3
Resources:
Abstract
3752 - The association between wearable device physical activity metrics and performance status in oncology: a systematic review
Presenter: Milan Kos
Session: Poster Display session 3
Resources:
Abstract
5820 - SomaticNET: neural network evaluation of somatic mutations in cancer
Presenter: Geoffroy Dubourg-Felonneau
Session: Poster Display session 3
Resources:
Abstract
4771 - Is there a role for Next-generation sequencing (NGS) profiling on metastatic non-colorectal gastrointestinal carcinomas (MNCGIC) in developing countries? A single center experience.
Presenter: Mauricio Ribeiro
Session: Poster Display session 3
Resources:
Abstract
1209 - Metastatic Cancer Whole-Exome Sequencing in daily practice
Presenter: Manon Réda
Session: Poster Display session 3
Resources:
Abstract
5702 - Genomic-Guided Individualized Precision Therapy in Refractory Metastatic Solid Tumor Patients with Extensively Poor Performance Status: A Chinese single institutional prospective observational real-world study
Presenter: Haitao Wang
Session: Poster Display session 3
Resources:
Abstract
4021 - Prospective pathological experience with research biopsies in the context of clinical trials at Vall d’Hebron Institute of Oncology
Presenter: Paolo Nuciforo
Session: Poster Display session 3
Resources:
Abstract