Abstract 5820
Background
DNA sequencing to identify variants is becoming increasingly valuable in clinical settings; including matching patients to approved targeted therapies, immunotherapies, and/or clinical trials. However, accurate calling of genetic variants from sequencing still remains challenging. With little corroboration between the different tools available, patients are at risk of being treated with therapies that are unsuitable for their cancer.
Methods
Here we present a novel machine learning based method for the accurate identification of somatic variants in cancer patient tumour samples, with a neural network architecture from encoded raw sequencing read information of tumour/normal sample pairings into an image, enabling it to classify whether a variant is germline, somatic, or sequencing error. The model was trained and tested on in-silico spike-in data using bam-surgeon, and then validated on a multi-cancer and multi-center dataset and benchmarked against industry standard variant callers.
Results
The approach, called somaticNET, outperforms existing industry standard tools in sensitivity and specificity, achieving an AUROC of ∼1.00 on the bam-surgeon dataset and an AUROC of ∼0.99 on the multi-cancer multicenter dataset. The model also works faster than other variant callers, in minutes compared to hours.
Conclusions
Using the power of machine learning for accurate somatic variant calling can improve patient matching to approved therapies and clinical trials, thus ensuring patients are given the right therapy at the right time to treat their cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Cambridge Cancer Genomics.
Disclosure
G. Dubourg-Felonneau: Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics. D. Rebergen: Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics. C. Parsons: Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics. H. Thompson: Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics. J.W. Cassidy: Leadership role, Shareholder / Stockholder / Stock options, Full / Part-time employment, Officer / Board of Directors: Cambridge Cancer Genomics. N. Patel: Leadership role, Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics. H.W. Clifford: Leadership role, Shareholder / Stockholder / Stock options, Full / Part-time employment: Cambridge Cancer Genomics.
Resources from the same session
5520 - Patient’s Usability Test results of a CINV Diary Application For Smartphones
Presenter: Paz Fernandez
Session: Poster Display session 3
Resources:
Abstract
2323 - Colorectal Telephone Assessment Pathway (CTAP) - A viable means of shortening time to a definitive diagnosis of Colorectal Cancer (CRC)
Presenter: Harriet Watson
Session: Poster Display session 3
Resources:
Abstract
6119 - Cancer Nursing and Social Media: Capturing the Zeitgeist
Presenter: Mark Foulkes
Session: Poster Display session 3
Resources:
Abstract
1776 - Examination of mobile applications on breast cancer
Presenter: AYDANUR AYDIN
Session: Poster Display session 3
Resources:
Abstract
4128 - E-health effectiveness to increase patient adherence for immunotherapy; a cost-benefit study.
Presenter: Maria José Dias
Session: Poster Display session 3
Resources:
Abstract
3219 - Experiences of internet-based stepped care among individuals with recently diagnosed cancer and symptoms of anxiety and/or depression
Presenter: Anna Hauffman
Session: Poster Display session 3
Resources:
Abstract
5010 - What do cancer patients know about their immunotherapy treatment?
Presenter: Mónica Arellano
Session: Poster Display session 3
Resources:
Abstract
4503 - Prospective Comparison of Travel Burden, Cost and Time to Obtain Tumor Board Treatment Plan Through In-Person Visits vs. an AI Enabled Health Technology (N=1803)
Presenter: Rajendra Badwe
Session: Poster Display session 3
Resources:
Abstract
4123 - Cancer care through the fire and flames: 3-year experience in the utilisation of electronic consultation and referral system at the Red Zone in Southern Thailand
Presenter: Nanthiya Rattanakhot
Session: Poster Display session 3
Resources:
Abstract
2087 - The effect of e-mobile education on the quality of life in women with breast cancer
Presenter: Derya ÇInar
Session: Poster Display session 3
Resources:
Abstract