Abstract 4407
Background
Ceritinib is an orally bioavailable, small molecule inhibitor for ALK/IGFR1/FAK, which are highly expressed in glioblastoma and brain metastases. Preclinical and clinical data suggest that ceritinib has activity in central nervous system (CNS) malignancies, but to date there is no direct evidence in patients. This study assessed the pharmacokinetics (PK) and pharmacodynamics (PD) of ceritinib in recurrent glioblastoma and brain metastasis patients.
Methods
Three brain metastasis and 7 glioblastoma patients with high expression of pSTAT5b/pFAK/pIGFR1 were enrolled and treated with oral ceritinib daily (750 mg) for 10 days prior to tumor resection. Plasma, tumor, and cerebrospinal fluid (CSF) samples were collected at ∼ 4 and 24 h following the last dose. Total and unbound drug concentrations were determined using LC-MS/MS. PD response was assessed by immunohistochemical analysis of pALK, pFAK, pIGFR1, and pIRS1 staining in treated tumor and matched archival tissues.
Results
Ceritinib was highly bound to human plasma protein (median fraction unbound (Fu), 1.4%) and to brain tumor tissue (median Fu, 0.073% and 0.14% in enhancing and non-enhancing regions respectively). There was a large interindividual variability in drug CNS penetration, with the median unbound concentrations in enhancing, non-enhancing, and CSF of 0.040, 0.006, and 0.012 µM, respectively. The median unbound tumor-to-plasma ratio was 2.44 and 0.33 in enhancing and non-enhancing areas, respectively. In one patient with brain metastasis, drug binding to enhancing tumor was significantly lower (Fu, 1.62%), resulting in a higher unbound drug tumor concentration and CSF concentration as compared to those in glioblastoma patients. In all patients, no changes in PD markers were detected.
Conclusions
Ceritinib is highly bound to plasma proteins and tumor tissues. Unbound drug concentrations achieved in brain metastasis and glioblastoma are unlikely sufficient for target modulation.
Clinical trial identification
NCT02605746.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The Ben and Catherine Ivy Foundation.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2182 - Evaluating the prevalence of the expression of PD-L1 in NSCLC specimens with short-duration formalin fixation using IHC 22C3 pharmDx
Presenter: Keiichi Ota
Session: Poster Display session 1
Resources:
Abstract
5255 - [18F]-FDG PET/CT in predicting PD-L1 status in nasopharyngeal carcinoma
Presenter: Liang Zhao
Session: Poster Display session 1
Resources:
Abstract
4910 - Expression of PD-L1 in Chinese Patients with Common Cancers
Presenter: Min Zheng
Session: Poster Display session 1
Resources:
Abstract
4227 - The clearance of EGF by tumor-associated macrophages is suppressed by chemotherapeutic agent cisplatin
Presenter: Irina Larionova
Session: Poster Display session 1
Resources:
Abstract
5222 - VHIO-300 and a thousand one nights, a tale of Precision Medicine
Presenter: Ginevra Caratù
Session: Poster Display session 1
Resources:
Abstract
5668 - Matched Whole-Genome Sequencing and Whole-Exome Sequencing with Circulating Tumor DNA (ctDNA) Analysis are complementary modalities in clinical practice
Presenter: Robin Imperial
Session: Poster Display session 1
Resources:
Abstract
5772 - Exploring the role of genes associated with familial cancer syndromes on the development of multiple primary tumors
Presenter: Atanaska Mitkova
Session: Poster Display session 1
Resources:
Abstract
4784 - Doxorubicin resistance: early and advanced tumors can use two different strategies based on initial and profound abnormalities in microRNA expression signature
Presenter: Volodymyr Halytskiy
Session: Poster Display session 1
Resources:
Abstract
3456 - From tumor transcriptomes to underlying cell type proportions to better predict prognosis and response to treatments
Presenter: Yuna Blum
Session: Poster Display session 1
Resources:
Abstract
4976 - Optimization of automated germline DNA extraction from non-tumoral formalin-fixed paraffin embedded (FFPE) tissues
Presenter: Omar Youssef
Session: Poster Display session 1
Resources:
Abstract