Abstract 5141
Background
SCLC is an aggressive disease with poor prognosis. Despite initial response to chemotherapy and radiotherapy, relapse occurs in most cases. To characterize genomic changes in SCLC over the course of therapy, we explored tracking tumor mutations in cell-free DNA (cfDNA) across post-treatment blood draws and comparing them to pre-treatment plasma and tissue profiles.
Methods
We retrospectively evaluated 235 samples collected from 24 subjects with late stage SCLC treated with first-line chemotherapy or chemoradiation in a prospective observational study. Tumor tissue samples were analyzed with the AVENIO Tumor Tissue Surveillance Kit (For Research Use Only, not for use in diagnostic procedures), a 198-kb next-generation sequencing panel covering 197 cancer genes. Matched peripheral blood mononuclear cells (PBMC), pre-treatment plasma, and multiple plasma from post-treatment timepoints were analyzed with the same panel using the AVENIO ctDNA Surveillance Kit (For Research Use Only, not for use in diagnostic procedures). A median input amount of 29 ng cfDNA, 129 ng tumor tissue DNA, and 50 ng PBMC DNA were sequenced to median deduplicated depths of 4491, 1315, and 6512, respectively. Somatic single nucleotide variants (SNVs) in tissue and plasma were identified by removing PBMC-matched germline or clonal hematopoietic mutations.
Results
We detected a median of 4 SNVs in tissue samples and a median of 100% (range 66 - 100%) of tissue SNVs in matched pre-treatment plasma. 96% (23/24) of subjects had at least one shared SNV between tissue and plasma, most commonly a TP53 mutation. A median of 7 SNVs were detected in pre-treatment plasma, whereas across all available post-treatment plasma (range 2 - 20 time points per subject), a median of 4 SNVs were detected. 53% of these mutations were not present in pre-treatment plasma or tissue.
Conclusions
Somatic mutations found in pre-treatment plasma were concordant with matched tissue, consistent with the highly metastatic nature of SCLC. ctDNA sequencing can provide additional molecular insights; in particular, detecting emergent mutations in ctDNA during treatment could advance our knowledge of SCLC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Roche Sequencing Solutions, Inc.
Funding
Roche Sequencing Solutions, Inc.
Disclosure
S. Yaung: Full / Part-time employment: Roche. C. Woestmann: Full / Part-time employment: Roche. L. Xi: Full / Part-time employment: Roche. C. Ju: Full / Part-time employment: Roche. B. Hinzmann: Shareholder / Stockholder / Stock options, Full / Part-time employment: Roche. M. Thomas: Honoraria (institution), Advisory / Consultancy, Research grant / Funding (institution), Travel / Accommodation / Expenses: Roche. F. Lasitschka: Research grant / Funding (institution): Roche. M. Meister: Research grant / Funding (institution): Roche. M. Schneider: Research grant / Funding (institution): Roche. F.J.F. Herth: Honoraria (institution): Roche. T. Muley: Research grant / Funding (institution), Licensing / Royalties: Roche. B. Wehnl: Full / Part-time employment: Roche. J. Palma: Shareholder / Stockholder / Stock options, Full / Part-time employment: Roche. X.M. Ma: Shareholder / Stockholder / Stock options, Licensing / Royalties, Full / Part-time employment: Roche.
Resources from the same session
5011 - LCSCAF1 maintains cancer stem-like traits by stabilizing c-Myc protein and promotes metastasis and recurrence in lung cancer
Presenter: Tao Guo
Session: Poster Display session 1
Resources:
Abstract
4955 - XAF1 Enhances Temozolomide Induced Autophagic Cell Death through AMPK signaling pathway
Presenter: Mingoo Lee
Session: Poster Display session 1
Resources:
Abstract
5616 - The effect of cortisol on methylation patterns in breast cancer cell lines
Presenter: Haya Intabli
Session: Poster Display session 1
Resources:
Abstract
4649 - Global and sex-specific epigenome-wide association studies for the identification of the main methylated loci related to smoking in a Mediterranean population
Presenter: Judith Begona Ramirez Sabio
Session: Poster Display session 1
Resources:
Abstract
4984 - Whole transcriptomics analyses of mimicking Circulating Tumor Cells (CTCs) by single-cell RNA sequencing (scRNAseq)
Presenter: Jessica Garcia
Session: Poster Display session 1
Resources:
Abstract
5926 - Comparison of enzymatic- and bisulfite conversion to map the plasma cell-free methylome in cancer
Presenter: Nicole Lambert
Session: Poster Display session 1
Resources:
Abstract
5454 - Detection of low mutations in hepatocellular carcinoma by using circulating tumor DNA
Presenter: Esl Kim
Session: Poster Display session 1
Resources:
Abstract
4428 - Variants in the JAK1 and JAK2 genes in the risk and prognosis of patients with cutaneous melanoma
Presenter: Bruna Carvalho
Session: Poster Display session 1
Resources:
Abstract
4409 - P-Rex1 expression in breast cancer patients.
Presenter: Angela Lara Montero
Session: Poster Display session 1
Resources:
Abstract
4185 - Modulation of Risk of Cutaneous Melanoma Patients by Variants in STAT3 Gene and Functional Analysis
Presenter: Gabriela Gomez
Session: Poster Display session 1
Resources:
Abstract