Abstract 5141
Background
SCLC is an aggressive disease with poor prognosis. Despite initial response to chemotherapy and radiotherapy, relapse occurs in most cases. To characterize genomic changes in SCLC over the course of therapy, we explored tracking tumor mutations in cell-free DNA (cfDNA) across post-treatment blood draws and comparing them to pre-treatment plasma and tissue profiles.
Methods
We retrospectively evaluated 235 samples collected from 24 subjects with late stage SCLC treated with first-line chemotherapy or chemoradiation in a prospective observational study. Tumor tissue samples were analyzed with the AVENIO Tumor Tissue Surveillance Kit (For Research Use Only, not for use in diagnostic procedures), a 198-kb next-generation sequencing panel covering 197 cancer genes. Matched peripheral blood mononuclear cells (PBMC), pre-treatment plasma, and multiple plasma from post-treatment timepoints were analyzed with the same panel using the AVENIO ctDNA Surveillance Kit (For Research Use Only, not for use in diagnostic procedures). A median input amount of 29 ng cfDNA, 129 ng tumor tissue DNA, and 50 ng PBMC DNA were sequenced to median deduplicated depths of 4491, 1315, and 6512, respectively. Somatic single nucleotide variants (SNVs) in tissue and plasma were identified by removing PBMC-matched germline or clonal hematopoietic mutations.
Results
We detected a median of 4 SNVs in tissue samples and a median of 100% (range 66 - 100%) of tissue SNVs in matched pre-treatment plasma. 96% (23/24) of subjects had at least one shared SNV between tissue and plasma, most commonly a TP53 mutation. A median of 7 SNVs were detected in pre-treatment plasma, whereas across all available post-treatment plasma (range 2 - 20 time points per subject), a median of 4 SNVs were detected. 53% of these mutations were not present in pre-treatment plasma or tissue.
Conclusions
Somatic mutations found in pre-treatment plasma were concordant with matched tissue, consistent with the highly metastatic nature of SCLC. ctDNA sequencing can provide additional molecular insights; in particular, detecting emergent mutations in ctDNA during treatment could advance our knowledge of SCLC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Roche Sequencing Solutions, Inc.
Funding
Roche Sequencing Solutions, Inc.
Disclosure
S. Yaung: Full / Part-time employment: Roche. C. Woestmann: Full / Part-time employment: Roche. L. Xi: Full / Part-time employment: Roche. C. Ju: Full / Part-time employment: Roche. B. Hinzmann: Shareholder / Stockholder / Stock options, Full / Part-time employment: Roche. M. Thomas: Honoraria (institution), Advisory / Consultancy, Research grant / Funding (institution), Travel / Accommodation / Expenses: Roche. F. Lasitschka: Research grant / Funding (institution): Roche. M. Meister: Research grant / Funding (institution): Roche. M. Schneider: Research grant / Funding (institution): Roche. F.J.F. Herth: Honoraria (institution): Roche. T. Muley: Research grant / Funding (institution), Licensing / Royalties: Roche. B. Wehnl: Full / Part-time employment: Roche. J. Palma: Shareholder / Stockholder / Stock options, Full / Part-time employment: Roche. X.M. Ma: Shareholder / Stockholder / Stock options, Licensing / Royalties, Full / Part-time employment: Roche.
Resources from the same session
5037 - CXCR4, CCR2 and CCR5 expression in subsets of tumor cells with stem and/or EMT features
Presenter: Olga Savelieva
Session: Poster Display session 1
Resources:
Abstract
5729 - Expression of mutant p53 affects cancer cell sensitivity to topotecan
Presenter: Rimma Mingaleeva
Session: Poster Display session 1
Resources:
Abstract
5725 - Breast cancer organoids a new tool for the prediction of drugs penetration and patient’outcome
Presenter: Giuseppina Roscigno
Session: Poster Display session 1
Resources:
Abstract
5680 - Aptamer-mediated exosomes detection for early breast cancer identification.
Presenter: Cristina Quintavalle
Session: Poster Display session 1
Resources:
Abstract
2460 - MicroRNA-181c promotes tamoxifen resistance in breast cancer cells via upregulation Akt/mTOR axis
Presenter: Alexander Scherbakov
Session: Poster Display session 1
Resources:
Abstract
3751 - Spatio-temporal separation of tumor infiltrating CD8+ T-cells and HER2/neu+ tumor cells in tumor-immune milieu of infiltrating ductal carcinoma of the breast
Presenter: Sandhya Sreedharan
Session: Poster Display session 1
Resources:
Abstract
4664 - Large genomic rearrangements in BRCA1 and BRCA2 genes in the Portuguese population.
Presenter: Joao Pinto
Session: Poster Display session 1
Resources:
Abstract
4611 - Non-BRCA1/2 hereditary breast and ovarian cancer: findings from a multidisciplinary program
Presenter: Ana Monteiro
Session: Poster Display session 1
Resources:
Abstract
5340 - Quantitative imaging and characterization of collagen patterns in high grade serous ovarian carcinoma (HGSOC)
Presenter: Ruby Huang
Session: Poster Display session 1
Resources:
Abstract
4209 - Semiquantitative assessment of vimentin expression in prostate cancer (PC)
Presenter: Marina Puchinskaya
Session: Poster Display session 1
Resources:
Abstract