Abstract 5454
Background
Liver cancer (LC) is presumed to be the sixth most common and newly diagnosed cancer and the fifth leading causing of cancer death around the world in 2018. Hepatocellular carcinoma (HCC) is the most frequent liver cancer and the chronic infection with hepatitis B/C virus is the major risk factor of HCC. Unlike tissue biopsy, liquid biopsy is based on collection of a sample in non-invasive and convenient way at multiple time points over the course of disease. For circulating cell free DNA, it can be used for Next Generation Sequencing (NGS) to detect genetic mutations.
Methods
Whole Blood of patients are collected and plasma was separated. The circulating tumor DNA (ctDNA) is extracted from the plasma samples and quantified using Qubit High Sensitive assay and Agilent D1000 assay. The extracted ctDNA is used for molecular barcoded library construction and captured with probe for next generation sequencing. All samples were then analyzed to identify genetic mutations.
Results
Currently, 20 HCC patients were collected and samples were extracted, sequenced and analyzed. Two thirds of the patients were hepatitis B-viral infected and the one third of the patients were Non-B, Non-C HCC. Most patients were staged 3 others were staged 1 or 2 in HCC. The total ctDNA in 2ml plasma of each patietns were ranged from 2.0 ng to 200ng. As total amount of ctDNA were varied, input ctDNA to construct library was differed ranging from 2ng to 50ng. After molecular tagged libraries were constructed, were pooled and captured with probe for next generation sequencing on Nextseq 500/550 300cycles. Data analysis was performed: TP53 mutations were most frequent and the frequency of mutations are ranged from 3% to 40%.
Conclusions
To fully utilize advantages of the liquid biopsy and circulating tumor DNA, detection of low frequency mutations in the cancer is essential. Detection of low frequency mutation in circulating tumor DNA of hepatocellular carcinoma via optimization of circulating tumor DNA Isolation in plasma samples, optimization of library preparation and target capture condition by using molecular barcoding and customized somatic mutation probe, may improve prognosis, diagnosis, prediction and monitoring of therapeutic response and detection of residual tumor burden.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1757 - Development of chimeric antigenic receptor (CAR) against VEGFR2 for solid tumor treatment
Presenter: Li-Shuang Ai
Session: Poster Display session 1
Resources:
Abstract
4156 - Triple blockade of EGFR, MEK and PD-L1 as effective antitumor treatment in PD-L1 overexpressing, MEK inhibitor resistant colon cancer cells.
Presenter: Nunzia Matrone
Session: Poster Display session 1
Resources:
Abstract
2949 - EGFR-mediated PD-L1 upregulation in HER2+ breast cancer (BC) cell line models
Presenter: Nicola Gaynor
Session: Poster Display session 1
Resources:
Abstract
4270 - The impact of cortisol on immune cells and its effect on cancer-immune cells co-culture in a 3D spheroid of ovarian cancer
Presenter: Maysa Al-natsheh
Session: Poster Display session 1
Resources:
Abstract
1568 - Application of sonoporation to increase anticancer drug efficacy in 2D and 3D NSCLC cell cultures
Presenter: Vilma Petrikaite
Session: Poster Display session 1
Resources:
Abstract
5400 - Tr1-like cells in human peripheral blood are part of the T effector memory pool and are preferentially stimulated via CD55
Presenter: Iniobong Charles
Session: Poster Display session 1
Resources:
Abstract
5817 - Functional analysis of tumor infiltrating lymphocytes in triple negative breast cancer focusing on granzyme B
Presenter: Hitomi Kawaji
Session: Poster Display session 1
Resources:
Abstract
2287 - Aberrant glycolysis associates with inflammatory tumor microenvironment and promotes metastasis in triple-negative breast cancer
Presenter: Chengwei Lin
Session: Poster Display session 1
Resources:
Abstract
735 - Anti-cancer effects of differentiation-inducing factor-1 in triple negative breast cancer.
Presenter: Fumi Tetsuo
Session: Poster Display session 1
Resources:
Abstract
2105 - The Inhibitory Effect in Oral Squamous Cell Carcinoma Cells by Knocking down Matrix Metalloproteinase 9
Presenter: Xinyan Zhang
Session: Poster Display session 1
Resources:
Abstract