Abstract 2752
Background
The tumor immune microenvironment (TIME) may hold critical information for developing and optimizing immuno-therapeutic approaches, identifying predictive signatures, and selecting the most adequate treatment option for a given patient. Tissue phenomics facilitates the use of the TIME to derive predictive conclusions. The visual information content in histological sections is systematically converted into numerical readouts using artificial intelligence (AI). Resulting quantitative descriptors, phenes, of detected structures are mined to yield local expression profiles; this spatial data aggregation detects categories of local environments, which are correlated to clinical, genomic or other -omics data to identify relevant cohort subpopulations.
Methods
Exploration of this technology is illustrated by various examples on different cohorts of NSCLC patients: A categorization of n = 45 non-IO-treated patients with respect to local immune profiles learned via AI in a hypothesis-free scenario was examined. A deep learning based PD-L1 scoring was compared to 3 pathologist’s scoring on n = 40 durvalumab-treated patients using the cutoff 25% of tumor cells staining positive for PD-L1 at any intensity. The predictive value of a digital signature combining cell densities of PD-L1 and CD8+ was tested on n = 163 durvalumab-treated and n = 199 non-IO-treated samples.
Results
A categorization into biologically interpretable classes learned by AI illustrates the exploratory benefits of tissue phenomics. The scoring algorithm could reproduce survival prediction when compared to pathologist’s visual scoring.The digital signature suggests a predictive value for patient stratification into responders and non-responders for durvalumab, while no prognostic value could be found on the non-IO-treated patients. Kaplan-Meier plots for the 2 latter examples will be presented in the poster.
Conclusions
Tissue phenomics facilitates the quantitative assessment of the tumor geography and may lead to improved tools for biomarker analysis and diagnosis. Analysis on larger and prospective datasets are to be conducted in the future to strengthen the findings.
Clinical trial identification
All of these results have been generated retrospectively from samples unrelated to a trial or related to the durvalumab-trial NCT01693562.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Boehringer Ingelheim, MedImmune, Definiens AG.
Disclosure
M. Groher: Full / Part-time employment: Definiens AG. J. Zimmermann: Shareholder / Stockholder / Stock options: AstraZeneca; Full / Part-time employment: Definiens AG. H. Musa: Full / Part-time employment: Boehringer Ingelheim. A. Ackermann: Full / Part-time employment: Boehringer Ingelheim. M. Surace: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. J. Rodriguez-Canales: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. M. Rebelatto: Shareholder / Stackeholder / Stock options: AstraZenec LLC; Full / Part-time employment: AstraZeneca LLC. K. Steele: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca; Spouse / Financial dependant: Arcellx LLC. A. Kapil: Full / Part-time employment: Definiens AG. N. Brieu: Shareholder / Stockholder / Stock options, Full / Part-time employment: Definiens AG. L. Rognoni: Full / Part-time employment: Definiens AG. F. Segerer: Full / Part-time employment: Definiens AG. A. Spitzmüller: Full / Part-time employment: Definiens AG. T. Tan: Full / Part-time employment: Definiens AG. A. Schäpe: Full / Part-time employment: Definiens AG. G. Schmidt: Full / Part-time employment: Definiens AG; Shareholder / Stockholder / Stock options: AstraZeneca.
Resources from the same session
3664 - Longitudinal changes in cell-free DNA (cfDNA) methylation levels identify early non-responders to treatment in advanced solid tumors
Presenter: Andrew Davis
Session: Poster Display session 3
Resources:
Abstract
3212 - Multigene panel testing results for hereditary breast cancer in 1325 individuals: implications for gene selection and considerations for guidelines.
Presenter: Georgios Tsaousis
Session: Poster Display session 3
Resources:
Abstract
2591 - PIK3R5 genetic predictors of hypertension induced by VEGF-pathway inhibitors
Presenter: Julia Quintanilha
Session: Poster Display session 3
Resources:
Abstract
4377 - ERBB2 mRNA as a predictor in HER2-positive (HER2+)/hormone receptor-positive (HR+) metastatic breast cancer (BC) treated with HER2 blockade in combination with endocrine therapy (ET): a retrospective analysis of the ALTERNATIVE and SOLTI-PAMELA trials.
Presenter: Nuria Chic
Session: Poster Display session 3
Resources:
Abstract
3439 - Early on-treatment vs pre-treatment tumor transcriptomes as predictors of response to neoadjuvant therapy for HER2-positive inflammatory breast cancer
Presenter: Sonia Pernas
Session: Poster Display session 3
Resources:
Abstract
2512 - AXL expression predicts poor prognosis and lack of efficacy of anti-angiogenic and anti-epidermal growth factor receptor (EGFR) agents in patients (pts) with RAS wild type (WT) metastatic colorectal cancer (mCRC)
Presenter: Claudia Cardone
Session: Poster Display session 3
Resources:
Abstract
4061 - Prevalence of EGFR mutations and its correlation with Egyptian patients’ human kinetics (PEEK Study)
Presenter: Adel Ibrahim
Session: Poster Display session 3
Resources:
Abstract
2547 - Evaluation of tumor microenvironment identifies immune correlates of response to combination immunotherapy with margetuximab (M) and pembrolizumab (P) in HER2+ gastroesophageal adenocarcinoma (GEA)
Presenter: Sergio Rutella
Session: Poster Display session 3
Resources:
Abstract
4671 - Clinicopathological and molecular criteria assessment for the screening of hypermutated proficient mismatch repair (pMMR) colorectal cancers (CRC) with exonucleasic domain POLE (edPOLE) mutations (mt).
Presenter: Benoit Rousseau
Session: Poster Display session 3
Resources:
Abstract
3862 - Tumor mutation burden and microsatellite instability in colorectal cancer
Presenter: Francesca Fenizia
Session: Poster Display session 3
Resources:
Abstract