Abstract 2752
Background
The tumor immune microenvironment (TIME) may hold critical information for developing and optimizing immuno-therapeutic approaches, identifying predictive signatures, and selecting the most adequate treatment option for a given patient. Tissue phenomics facilitates the use of the TIME to derive predictive conclusions. The visual information content in histological sections is systematically converted into numerical readouts using artificial intelligence (AI). Resulting quantitative descriptors, phenes, of detected structures are mined to yield local expression profiles; this spatial data aggregation detects categories of local environments, which are correlated to clinical, genomic or other -omics data to identify relevant cohort subpopulations.
Methods
Exploration of this technology is illustrated by various examples on different cohorts of NSCLC patients: A categorization of n = 45 non-IO-treated patients with respect to local immune profiles learned via AI in a hypothesis-free scenario was examined. A deep learning based PD-L1 scoring was compared to 3 pathologist’s scoring on n = 40 durvalumab-treated patients using the cutoff 25% of tumor cells staining positive for PD-L1 at any intensity. The predictive value of a digital signature combining cell densities of PD-L1 and CD8+ was tested on n = 163 durvalumab-treated and n = 199 non-IO-treated samples.
Results
A categorization into biologically interpretable classes learned by AI illustrates the exploratory benefits of tissue phenomics. The scoring algorithm could reproduce survival prediction when compared to pathologist’s visual scoring.The digital signature suggests a predictive value for patient stratification into responders and non-responders for durvalumab, while no prognostic value could be found on the non-IO-treated patients. Kaplan-Meier plots for the 2 latter examples will be presented in the poster.
Conclusions
Tissue phenomics facilitates the quantitative assessment of the tumor geography and may lead to improved tools for biomarker analysis and diagnosis. Analysis on larger and prospective datasets are to be conducted in the future to strengthen the findings.
Clinical trial identification
All of these results have been generated retrospectively from samples unrelated to a trial or related to the durvalumab-trial NCT01693562.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Boehringer Ingelheim, MedImmune, Definiens AG.
Disclosure
M. Groher: Full / Part-time employment: Definiens AG. J. Zimmermann: Shareholder / Stockholder / Stock options: AstraZeneca; Full / Part-time employment: Definiens AG. H. Musa: Full / Part-time employment: Boehringer Ingelheim. A. Ackermann: Full / Part-time employment: Boehringer Ingelheim. M. Surace: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. J. Rodriguez-Canales: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. M. Rebelatto: Shareholder / Stackeholder / Stock options: AstraZenec LLC; Full / Part-time employment: AstraZeneca LLC. K. Steele: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca; Spouse / Financial dependant: Arcellx LLC. A. Kapil: Full / Part-time employment: Definiens AG. N. Brieu: Shareholder / Stockholder / Stock options, Full / Part-time employment: Definiens AG. L. Rognoni: Full / Part-time employment: Definiens AG. F. Segerer: Full / Part-time employment: Definiens AG. A. Spitzmüller: Full / Part-time employment: Definiens AG. T. Tan: Full / Part-time employment: Definiens AG. A. Schäpe: Full / Part-time employment: Definiens AG. G. Schmidt: Full / Part-time employment: Definiens AG; Shareholder / Stockholder / Stock options: AstraZeneca.
Resources from the same session
3117 - A modified Edmonton Symptom Assessment Scale for assessing symptoms in one day chemotherapy clinic
Presenter: Anjuleta Kampitsi
Session: Poster Display session 3
Resources:
Abstract
6058 - Level of physical activity and nutritional status in cancer patients with fatigue: an exploratory cross-sectional study
Presenter: Patrick Jahn
Session: Poster Display session 3
Resources:
Abstract
1980 - Catheter related necrotizing fascitiis in haematological patients. Case report and implications for nursing
Presenter: Arianna Rosich Soteras
Session: Poster Display session 3
Resources:
Abstract
3984 - Everyday life with Long-term Chemotherapy Induced Peripheral Neuropathy among Patient in Adjuvant Treatment for Colorectal Cancer – a Multi Methods Study
Presenter: Marlene Jensen
Session: Poster Display session 3
Resources:
Abstract
2202 - Scalp cooler is effective in reducing chemotherapy-induced alopecia among breast cancer patients : a single institution experience
Presenter: Emilia Gianotti
Session: Poster Display session 3
Resources:
Abstract
5942 - Nursing management of fatigue in cancer patients: mixed methods study
Presenter: Angela Tolotti
Session: Poster Display session 3
Resources:
Abstract
2930 - Awareness of Nursing Students about the Warning Signs of Cancer
Presenter: Hatice Yakar
Session: Poster Display session 3
Resources:
Abstract
2978 - Assessment of quality of life in patients with cancer and diabetes 2 in Northern Greece.
Presenter: STYLIANI MICHALOPOULOU
Session: Poster Display session 3
Resources:
Abstract
3400 - Radiation dose variables related to the causes of skin toxicities in women with breast cancer: a study proposal
Presenter: EULALIA PUJOL
Session: Poster Display session 3
Resources:
Abstract
2156 - How should the symptoms be managed after breast cancer surgery? An example of mobile app
Presenter: AYDANUR AYDIN
Session: Poster Display session 3
Resources:
Abstract