Abstract 1814
Background
Tumor Treating Fields (TTFields) are intermediate frequency, alternating electric fields that non-invasively treat cancer. Transducer arrays positioned on the skin in proximity to the targeted tumor transmit TTFields. A post-hoc analysis [Ballo et al. Red Jour. 2019 In Press] has shown that increased patient usage (percent of time on active treatment) and intensity of TTFields delivery direct to the tumor improved survival. Optimal array positioning may enhance TTFields intensity at the tumor site to improve patient experience and survival. Minimization of array exposure area would enhance patient comfort levels and usage to improve survival. Optimizing TTFields delivery and distribution depends on array positioning and geometry, patient anatomy, and the heterogeneous electrical properties of different tissues. We present methodology to optimize TTFields delivery using numerical simulations.
Methods
TTFields delivery to the brain, lung, and abdomen utilizing representative computational models was investigated. The effects of transducer array size and position on field distribution within the phantoms was analyzed, and an approach to optimize TTFields delivery was developed.
Results
Field intensity was typically the greatest in between arrays, with larger arrays transmitting higher field power. Anatomical features, such as bones (spine) or a resection cavity significantly influenced field intensity within this region. A generalized methodology to optimize TTFields delivery for improved patient care was based on: (1) Striking a balance between maximal field intensity (largest arrays feasible) and minimal skin exposure to arrays in the disease area; (2) Positioning virtual arrays on a representative, computational patient model to test tumor localization between arrays, to simulate TTFields delivery to patient, and to assess optimal delivery; and (3) Applying an iterative algorithm to shift arrays around their initial positions until field intensity is maximized directly to the tumor bed.
Conclusions
A generalized treatment methodology as presented by these data will optimize TTFields delivery to the tumor site. Effective TTFields treatment planning is expected to improve patient outcomes.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Novocure.
Funding
Novocure.
Disclosure
N. Urman: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. Z. Bomzon: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. H.S. Hershkovich: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. E.D. Kirson: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. A. Naveh: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. R. Shamir: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. E. Fedorov: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. C. Wenger: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure. U. Weinberg: Full / Part-time employment: Novocure; Shareholder / Stockholder / Stock options: Novocure.
Resources from the same session
5517 - Molecular fingerprinting in breast cancer (BC) screening using Quantum Optics (QO) technology combined with an artificial intelligence (AI) approach applying the concept of “molecular profiles at n variables (MPnV)”: a prospective pilot study.
Presenter: Jean-Marc Nabholtz
Session: Poster Display session 3
Resources:
Abstract
2152 - Inferring the correlation between incidence rates of melanoma and the average tumor-specific epitope binding ability of HLA class I molecules in different populations
Presenter: Istvan Miklos
Session: Poster Display session 3
Resources:
Abstract
4382 - Thermal Liquid Biopsy as a Valuable Tool in Lung Cancer Screening Programs
Presenter: Alberto Rodrigo
Session: Poster Display session 3
Resources:
Abstract
2465 - Towards a screening test for cancer by circulating DNA analysis
Presenter: Rita Tanos
Session: Poster Display session 3
Resources:
Abstract
3788 - Evaluation of a successful launch of the MammaPrint and BluePrint NGS kit
Presenter: Leonie Delahaye
Session: Poster Display session 3
Resources:
Abstract
3863 - Analysis of prognostic factors on overall survival in elderly women treated for early breast cancer using data mining and machine learning
Presenter: Pierre Heudel
Session: Poster Display session 3
Resources:
Abstract
1993 - Circulating tumor cell detection in epithelial ovarian cancer using dual-component antibodies targeting EpCAM and FRα
Presenter: Na Li
Session: Poster Display session 3
Resources:
Abstract
4281 - CEUS of the breast: Is it feasible in improved performance of BI-RADS evaluation of critical breast lesions?——A multi-center prospective study in China
Presenter: Jun Luo
Session: Poster Display session 3
Resources:
Abstract
2268 - Classification of abnormal findings on ring-type dedicated breast PET for detecting breast cancer
Presenter: Shinsuke Sasada
Session: Poster Display session 3
Resources:
Abstract
4035 - Prediction of benign and malignant breast masses using digital mammograms texture features
Presenter: Cui Yanhua
Session: Poster Display session 3
Resources:
Abstract