Abstract 1323
Background
Credible prognostic stratification remains a challenge for neuroblastoma (NBL) with variable clinical manifestations. RNA expression signatures might predict the outcomes; notwithstanding, independent cross-platform validation is still rare.
Methods
RNA expression data were obtained from NBL patients and then analyzed. In TARGET-NBL data, an RNA-based prognostic signature was developed and validated. Survival prediction was assessed using a time-dependent receiver operating characteristic (ROC) curve. Functional enrichment analysis of the RNAs was conducted using bioinformatics methods.
Results
A total of 1,119 differentially expressed RNAs and 149 prognosis-related RNAs were identified sequentially. Then, in the training cohort, 12 RNAs were identified as significantly associated with overall survival (OS) and were combined to develop a model that stratified NBL patients into low- and high-risk groups. Twelve RNA signature high-risk patients had poorer OS in the training cohort (n = 105, Hazard Ratios (HR)= 0.10 (0.05-0.20), P < 0.001) and in the validation cohort (n = 44, HR = 0.25 (0.09-0.69), P = 0.008). ROC curve analysis also showed that both the training and validation cohorts performed well in predicting OS (12-month AUC values of 0.852 and 0.438, 36-month AUC values of 0.824 and 0.737, and 60-month AUC values of 0.802 and 0.702, respectively). Moreover, these 12 RNAs may be involved in certain events that are known to be associated with NBL through functional enrichment analysis.
Conclusions
This study identified and validated a novel 12-RNA prognostic signature to reliably distinguish NBL patients at low and high risk of death. Further larger, multicenter prospective studies are desired to validate this model.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (Grant No. 81660512).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5678 - Nanomaterials Augmented LDI-TOF-MS for Hepatocellular Carcinoma Diagnosis and Classification
Presenter: Jian Zhou
Session: Poster Display session 3
Resources:
Abstract
2436 - Development and Validation of an RNA-Seq Assay for Gene Fusions Detection in Formalin-Fixed Paraffin-Embedded Samples
Presenter: Hua Dong
Session: Poster Display session 3
Resources:
Abstract
5271 - A Pilot Study to Implement an Artificial Intelligence (AI) System for Gastrointestinal Cancer Clinical Trial Matching
Presenter: Zhaohui Jin
Session: Poster Display session 3
Resources:
Abstract
4787 - A Blinded Comparison of Patient Treatments to Therapeutic Options Presented by an Artificial Intelligence-based Clinical Decision-support system
Presenter: Suthida Suwanvecho
Session: Poster Display session 3
Resources:
Abstract
5744 - OncOS: scalable and accurate next-generation sequencing analytics for precision oncology and personalized patient care
Presenter: Joe Thompson
Session: Poster Display session 3
Resources:
Abstract
3752 - The association between wearable device physical activity metrics and performance status in oncology: a systematic review
Presenter: Milan Kos
Session: Poster Display session 3
Resources:
Abstract
5820 - SomaticNET: neural network evaluation of somatic mutations in cancer
Presenter: Geoffroy Dubourg-Felonneau
Session: Poster Display session 3
Resources:
Abstract
4771 - Is there a role for Next-generation sequencing (NGS) profiling on metastatic non-colorectal gastrointestinal carcinomas (MNCGIC) in developing countries? A single center experience.
Presenter: Mauricio Ribeiro
Session: Poster Display session 3
Resources:
Abstract
1209 - Metastatic Cancer Whole-Exome Sequencing in daily practice
Presenter: Manon Réda
Session: Poster Display session 3
Resources:
Abstract
5702 - Genomic-Guided Individualized Precision Therapy in Refractory Metastatic Solid Tumor Patients with Extensively Poor Performance Status: A Chinese single institutional prospective observational real-world study
Presenter: Haitao Wang
Session: Poster Display session 3
Resources:
Abstract