Abstract 3607
Background
We aimed to establish a prognostic model based on magnetic resonance imaging using deep learning to predict disease-free survival in patients with non-metastatic nasopharyngeal carcinoma.
Methods
In this retrospective, cohort study, we included 1636 patients who were diagnosed with non-metastatic nasopharyngeal carcinoma and underwent radical treatment at the Sun Yat-sen University Cancer Center. Patients from October 2010 to March 2015 were randomly divided into training cohort (n = 878) and validation cohort (n = 376); 382 patients from April 2015 to September 2015 were separated as test cohort. 3D DenseNet models learned deep representations of pre-treatment MRI and risk scores were extracted to predict PFS in the training cohort. We evaluated the accuracy of the prognostic model in validation and test cohorts. The primary endpoint was DFS, and the secondary endpoint was distant metastasis-free survival (DMFS).
Results
A series of risk scores for each patient were extracted from 3D DenseNet models, and an optimal cut-off value of risk scores was generated to classify patients into low-risk and high-risk group in the training cohort. Patients with low-risk scores had better DFS (hazard ratio [HR] 0.62, 95% CI 0.55 -0.70; p < 0.0001) and DMFS (HR 0.62, 95% CI 0.48 -0.81; p < 0.0003) than patients with low-risk scores. And we validated the prognostic accuracy of risk scores in the validation and test cohorts. In addition, patients who received concurrent chemotherapy had a poorer DFS (hazard ratio [HR] 7.79, 95% CI 1.08 -56.00; p < 0.041) compared with those who did not receive concurrent chemotherapy in low-risk group, meanwhile, patients with or without concurrent chemotherapy had similar outcomes in the high-risk group (HR 2.39, 95% CI 0.59 -9.62; p = 0.22). We also developed a nomogram based on risk scores and several clinical factors that predicted an individual’s risk of DFS.
Conclusions
MRI-based 3D DenseNet models are effective tools to learn deep representations and extract risk scores of DFS. Risk scores can be reliable prognostic factors to select which patients benefit from concurrent chemotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2927 - Singapore Caregiver Quality Of Life Scale (SCQOLS): Turkish Validity and Reliability Study
Presenter: Nur Basak
Session: Poster Display session 3
Resources:
Abstract
5066 - Screening for Psicosocial Distress in recently diagnosed cancer patients
Presenter: Eva Baillès
Session: Poster Display session 3
Resources:
Abstract
6074 - Socio-demographic characteristics and quality of life analysis of cancer survivors followed at a Primary Care Center.
Presenter: Begona Grana Suarez
Session: Poster Display session 3
Resources:
Abstract
5129 - The adhesion in the screening measures in carrying patients of breast cancer and ovary hereditary and the relationship with the psychological aspects
Presenter: Melinda Concepcion
Session: Poster Display session 3
Resources:
Abstract
5635 - Assessment of emotional discomfort of oncological patients in the first nursing visit at Donostia University Hospital
Presenter: Elena Uranga
Session: Poster Display session 3
Resources:
Abstract
858 - A systematic review and meta-analysis of the distress thermometer for the screening of distress in Chinese patients with cancer
Presenter: Hui Hui Sun
Session: Poster Display session 3
Resources:
Abstract
4475 - Pharmacist and Nurse (PN) Led Melanoma Immunotherapy Clinic: Patient Experience Survey
Presenter: Dharmisha Chauhan
Session: Poster Display session 3
Resources:
Abstract
1871 - Phone Triage & Acute Review Clinics: The emerging role of the Oncology Specialist Nurse
Presenter: Fiona Barrett
Session: Poster Display session 3
Resources:
Abstract
5193 - Patient reported outcomes during immunotherapy: symptom burden in daily clinical practice
Presenter: José Koldenhof
Session: Poster Display session 3
Resources:
Abstract
2453 - Factors related to hospital length of stay, re-admissions and unplanned care for patients with cancer, an on-going study
Presenter: Helena Ullgren
Session: Poster Display session 3
Resources:
Abstract