Abstract 3607
Background
We aimed to establish a prognostic model based on magnetic resonance imaging using deep learning to predict disease-free survival in patients with non-metastatic nasopharyngeal carcinoma.
Methods
In this retrospective, cohort study, we included 1636 patients who were diagnosed with non-metastatic nasopharyngeal carcinoma and underwent radical treatment at the Sun Yat-sen University Cancer Center. Patients from October 2010 to March 2015 were randomly divided into training cohort (n = 878) and validation cohort (n = 376); 382 patients from April 2015 to September 2015 were separated as test cohort. 3D DenseNet models learned deep representations of pre-treatment MRI and risk scores were extracted to predict PFS in the training cohort. We evaluated the accuracy of the prognostic model in validation and test cohorts. The primary endpoint was DFS, and the secondary endpoint was distant metastasis-free survival (DMFS).
Results
A series of risk scores for each patient were extracted from 3D DenseNet models, and an optimal cut-off value of risk scores was generated to classify patients into low-risk and high-risk group in the training cohort. Patients with low-risk scores had better DFS (hazard ratio [HR] 0.62, 95% CI 0.55 -0.70; p < 0.0001) and DMFS (HR 0.62, 95% CI 0.48 -0.81; p < 0.0003) than patients with low-risk scores. And we validated the prognostic accuracy of risk scores in the validation and test cohorts. In addition, patients who received concurrent chemotherapy had a poorer DFS (hazard ratio [HR] 7.79, 95% CI 1.08 -56.00; p < 0.041) compared with those who did not receive concurrent chemotherapy in low-risk group, meanwhile, patients with or without concurrent chemotherapy had similar outcomes in the high-risk group (HR 2.39, 95% CI 0.59 -9.62; p = 0.22). We also developed a nomogram based on risk scores and several clinical factors that predicted an individual’s risk of DFS.
Conclusions
MRI-based 3D DenseNet models are effective tools to learn deep representations and extract risk scores of DFS. Risk scores can be reliable prognostic factors to select which patients benefit from concurrent chemotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3073 - 1 patient 3 different advance Ca nurse’s roles: symptom management&continuum care through a joint approach in a clinical case
Presenter: Catarina Almeida
Session: Poster Display session 3
Resources:
Abstract
4527 - Identification of malnutrition risk factors in patients with cancer in the first nursing visit
Presenter: Amaia Valverde
Session: Poster Display session 3
Resources:
Abstract
2904 - Engaging Cancer Survivors, Healthcare Providers and Advocates in The Development of a Colorectal Cancer Survivorship Information Resource: A Participatory Action Research Study
Presenter: Amanda Drury
Session: Poster Display session 3
Resources:
Abstract
3435 - Medical nurses’ experiences of the care-needs of adult patients with a primary brain tumour
Presenter: Jamila Mohammed
Session: Poster Display session 3
Resources:
Abstract
857 - Feasibility and acceptability of a mHealth intervention to increase colonoscopy uptake among Chinese first-degree relatives: a pilot cluster randomized controlled trial
Presenter: Yang Bai
Session: Poster Display session 3
Resources:
Abstract
1087 - Cancer patient participation and compliance in microbiome sample collection: an oncology research nurse’s experience
Presenter: Julie Malo
Session: Poster Display session 3
Resources:
Abstract
2783 - Implementing Digital Individual Care plans for Patients with Head and Neck cancer- Challenges and opportunities
Presenter: Helena Ullgren
Session: Poster Display session 3
Resources:
Abstract
1152 - The Effect of the Short-term and Long-term Compassion Fatigue Resiliency Program on the Quality of Life, Perceived Stress and Psychological Resilience of Oncology-Hematology Nurses
Presenter: Tugba Pehlivan
Session: Poster Display session 3
Resources:
Abstract
1172 - Competing risk analyses of overall survival and cancer-specific survival in patients with orbital rhabdomyosarcoma after surgery: a large cohort study
Presenter: Yu Zhang
Session: Poster Display session 3
Resources:
Abstract
5949 - Communication of genetic information to family members in hereditary cancers and healthcare providers’ role
Presenter: Carla Pedrazzani
Session: Poster Display session 3
Resources:
Abstract