Abstract 3607
Background
We aimed to establish a prognostic model based on magnetic resonance imaging using deep learning to predict disease-free survival in patients with non-metastatic nasopharyngeal carcinoma.
Methods
In this retrospective, cohort study, we included 1636 patients who were diagnosed with non-metastatic nasopharyngeal carcinoma and underwent radical treatment at the Sun Yat-sen University Cancer Center. Patients from October 2010 to March 2015 were randomly divided into training cohort (n = 878) and validation cohort (n = 376); 382 patients from April 2015 to September 2015 were separated as test cohort. 3D DenseNet models learned deep representations of pre-treatment MRI and risk scores were extracted to predict PFS in the training cohort. We evaluated the accuracy of the prognostic model in validation and test cohorts. The primary endpoint was DFS, and the secondary endpoint was distant metastasis-free survival (DMFS).
Results
A series of risk scores for each patient were extracted from 3D DenseNet models, and an optimal cut-off value of risk scores was generated to classify patients into low-risk and high-risk group in the training cohort. Patients with low-risk scores had better DFS (hazard ratio [HR] 0.62, 95% CI 0.55 -0.70; p < 0.0001) and DMFS (HR 0.62, 95% CI 0.48 -0.81; p < 0.0003) than patients with low-risk scores. And we validated the prognostic accuracy of risk scores in the validation and test cohorts. In addition, patients who received concurrent chemotherapy had a poorer DFS (hazard ratio [HR] 7.79, 95% CI 1.08 -56.00; p < 0.041) compared with those who did not receive concurrent chemotherapy in low-risk group, meanwhile, patients with or without concurrent chemotherapy had similar outcomes in the high-risk group (HR 2.39, 95% CI 0.59 -9.62; p = 0.22). We also developed a nomogram based on risk scores and several clinical factors that predicted an individual’s risk of DFS.
Conclusions
MRI-based 3D DenseNet models are effective tools to learn deep representations and extract risk scores of DFS. Risk scores can be reliable prognostic factors to select which patients benefit from concurrent chemotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5520 - Patient’s Usability Test results of a CINV Diary Application For Smartphones
Presenter: Paz Fernandez
Session: Poster Display session 3
Resources:
Abstract
2323 - Colorectal Telephone Assessment Pathway (CTAP) - A viable means of shortening time to a definitive diagnosis of Colorectal Cancer (CRC)
Presenter: Harriet Watson
Session: Poster Display session 3
Resources:
Abstract
6119 - Cancer Nursing and Social Media: Capturing the Zeitgeist
Presenter: Mark Foulkes
Session: Poster Display session 3
Resources:
Abstract
1776 - Examination of mobile applications on breast cancer
Presenter: AYDANUR AYDIN
Session: Poster Display session 3
Resources:
Abstract
4128 - E-health effectiveness to increase patient adherence for immunotherapy; a cost-benefit study.
Presenter: Maria José Dias
Session: Poster Display session 3
Resources:
Abstract
3219 - Experiences of internet-based stepped care among individuals with recently diagnosed cancer and symptoms of anxiety and/or depression
Presenter: Anna Hauffman
Session: Poster Display session 3
Resources:
Abstract
5010 - What do cancer patients know about their immunotherapy treatment?
Presenter: Mónica Arellano
Session: Poster Display session 3
Resources:
Abstract
4503 - Prospective Comparison of Travel Burden, Cost and Time to Obtain Tumor Board Treatment Plan Through In-Person Visits vs. an AI Enabled Health Technology (N=1803)
Presenter: Rajendra Badwe
Session: Poster Display session 3
Resources:
Abstract
4123 - Cancer care through the fire and flames: 3-year experience in the utilisation of electronic consultation and referral system at the Red Zone in Southern Thailand
Presenter: Nanthiya Rattanakhot
Session: Poster Display session 3
Resources:
Abstract
2087 - The effect of e-mobile education on the quality of life in women with breast cancer
Presenter: Derya ÇInar
Session: Poster Display session 3
Resources:
Abstract