Abstract 5271
Background
Clinical trials improve our knowledge of diseases and treatments while providing patients access to investigational agents. However, approximately 3% of newly diagnosed cancer patients are enrolled in clinical trials in the United States. Identifying an appropriate trial for a patient is time-consuming and cumbersome in the busy clinical practice. The Watson for Clinical Trial Matching (CTM) cognitive system uses AI to derive patient and cancer-related attributes from structured and unstructured text found in the electronic health record. These attributes are matched to complex eligibility criteria in clinical trial protocols.
Methods
In April 2019, a pilot study was launched to test the feasibility of implementing CTM in Gastrointestinal (GI) oncology at Mayo Clinic in Rochester, MN. Two clinical research coordinators (CRCs) screened patients for potential clinical trials prior to their clinic visits using both CTM and the traditional manual screening method. To avoid bias, each CRC screened a separate set of patients by both methods alternating which methodology was used first. The clinical trial match results were blinded to both CRCs. For each method, time to complete the screen and number of potential clinical trial matches were recorded.
Results
A total of 35 GI cancer patients with new diagnosis, recent resection or restaging scans were analyzed. Patients were evaluated against 50 GI-specific drug therapy and multi-disease phase I clinical trials. Clinical trial matching using CTM took an average of 10.1 minutes (Range: 4 to 20 min) per patient compared to an average of 30.5 minutes (Range: 5 to 75 min) per patient (p < 0.0001) using the manual method. CTM identified an average of 7.66 clinical trials (Range: 0-16) while the manual screening method identified an average of 1.97 clinical trials (Range: 0 to 6) per patient (p < 0.0001).
Conclusions
Implementation of Watson for CTM system with a CRC team may enable high volume patient screening for a large number of clinical trials in an efficient manner and promote awareness of clinical trial opportunities within the GI oncology practice. Further analysis to evaluate CTM accuracy and impact on enrollment is warranted and currently underway.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Mayo Clinic.
Disclosure
T. Haddad: Advisory / Consultancy: TerSera Therapeautics; Research grant / Funding (self): Takeda. S. Coverdill: Full / Part-time employment: IBM Watson Health; Shareholder / Stockholder / Stock options: IBM. M. Rammage: Full / Part-time employment: IBM Watson Health; Licensing / Royalties: IBM. All other authors have declared no conflicts of interest.
Resources from the same session
3630 - Results of phase 1 clinical trial of high doses of Seleno-L-methionine (SLM) in sequential combination with Axitinib in previously treated and relapsed clear cell renal carcinoma (ccRCC) patients
Presenter: Yousef Zakharia
Session: Poster Display session 3
Resources:
Abstract
2356 - Safety and Efficacy of CDX-014 , an Antibody-Drug Conjugate against T Cell immunoglobulin mucin-1 (TIM-1), in advanced Renal Cell Carcinoma
Presenter: Bradley McGregor
Session: Poster Display session 3
Resources:
Abstract
1028 - SPAZO2 (SOGUG): Outcomes and prognostic significance of IMDC intermediate prognosis subclassification in metastatic renal cell carcinoma (mRCC) in patients treated with 1st-line pazopanib (1stPz).
Presenter: Begona P. Valderrama
Session: Poster Display session 3
Resources:
Abstract
2293 - Effect of Antacid Intake on the Therapeutic Efficacy of Sunitinib (SUN) in Metastatic Renal Cell Carcinoma (mRCC) Patients (pts): a Sub-Analysis of the STAR-TOR Registry
Presenter: Katrin Schlack
Session: Poster Display session 3
Resources:
Abstract
1451 - Randomized phase 3 trial of avelumab + axitinib vs sunitinib as first-line treatment for advanced renal cell carcinoma: JAVELIN Renal 101 Japanese subgroup analysis
Presenter: Motohide Uemura
Session: Poster Display session 3
Resources:
Abstract
4399 - Overall and progression-free survival according to MSKCC scores in 1st line sunitinib treatment of metastatic renal cell carcinoma (mRCC)
Presenter: Jindrich Finek
Session: Poster Display session 3
Resources:
Abstract
1344 - Combination therapy with checkpoint inhibitors for first-line treatment of advanced renal cell carcinoma: A systematic review and meta-analysis of randomized controlled trials
Presenter: Kyaw Thein
Session: Poster Display session 3
Resources:
Abstract
3462 - A phase II trial of TKI induction followed by a randomized comparison between nivolumab or TKI continuation in renal cell carcinoma (NIVOSWITCH)
Presenter: Viktor Grünwald
Session: Poster Display session 3
Resources:
Abstract
5268 - Nivolumab (N) treatment beyond progression in a real-world cohort of patients (pts) with metastatic renal cell carcinoma (mRCC)
Presenter: Sophie Hans
Session: Poster Display session 3
Resources:
Abstract
4235 - First results of safety profile of nivolumab (NIVO) in combination with stereotactic body radiotherapy (SBRT) in II and III line of patients (pts) with metastatic renal cell carcinoma (mRCC) in NIVES Study
Presenter: Cristina Masini
Session: Poster Display session 3
Resources:
Abstract