Abstract 7P
Background
In current clinical practice, the routine approaches of axillary lymph node (ALN) status evaluation through sentinel lymph node biopsy (SLNB) is unsatisfied with high false-negative rate and brings significant complications. We aimed to develop a preoperative magnetic resonance imaging radiomic-based signature for predicting ALN metastasis (ALNM) in a non-invasive way.
Methods
A total of 1,090 early-stage invasive breast cancer patients from 4 institutions were enrolled in this multicenter, retrospective, diagnositc study. Radiomic signature for ALNM prediction were constructed by machine learning in 803 patients from Sun Yat-sen Memorial Hospital and Sun Yat-sen University Cancer Center (Training cohort). The clinical-radiomic siganture was constructed by combining radiomic signature and significant clinic-pathological risk factors and was validated in patients from prospective phase III trials [NCT01503905] (Internal validation cohort, n=106), and Shunde Hospital and Tungwah Hospital (External validation cohort, n=181). This study is registered with ClinicalTrials.gov (NCT04003558) and Chinese Clinical Trail Registry (ChiCTR1900024020).
Results
The radiomic signature for predicting ALNM consisted of intratumoral and ALN features showed AUCs of 0.91, 0.88, and 0.85 in the training, internal validation and external validation cohorts. The clinical-radiomic signature achieved the highest AUCs of 0.93, 0.91, and 0.91 in the training, internal validation and external validation cohorts, which successfully discriminate high- from low risk relapse patients (HR 0.12, 95% CI 0.03–0.53; P<0.001) and was similar to the performance in ALNM and non-ALNM (HR 0.28, 95% CI 0.09–0.87; P=0.002). In additon, the clinical-radiomic signature also performed well in the subgroup of N1, N2, N3 status (AUCs of 0.89, 0.90, 0.97).
Conclusions
This study developed a clinical-radiomic signature incorporated the intratumoral and ALN radiomic features and clinical risk factors, which could serve as a non-invasive tool to evaluate ALN status for guiding surgery plans of early-stage breast cancer patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
360P - Number of lymph nodes examined was not an independent risk factor for the survival of patients with stage IA1-2 lung adenocarcinoma undergoing sublobar resection
Presenter: Zhenbin Qiu
Session: e-Poster Display Session
361P - Radiomic model predicting radiological response after thoracic stereotactic body radiotherapy regardless of tumor histology and staging
Presenter: Ben Man Fei Cheung
Session: e-Poster Display Session
362P - Integrative and comparative genomic analysis and immune microenvironment features of lung cancer patients with tuberculosis
Presenter: Xiaoling Xu
Session: e-Poster Display Session
363P - Genetic predisposition for pre-invasive lung adenocarcinoma manifesting as ground-glass nodules with family history of lung cancer
Presenter: Rui Fu
Session: e-Poster Display Session
364P - A deep learning model for the classification of lung cancer
Presenter: Gouji Toyokawa
Session: e-Poster Display Session
365P - Utilization of on-site pathology evaluation for lung cancer diagnosis in the Philippines’ National University Hospital
Presenter: Rich Ericson King
Session: e-Poster Display Session
367P - Detection of epidermal growth factor receptor mutations (EGFR-mut) from cell-free DNA in pleural effusion (PE-DNA) of patients with non-small cell lung cancer (NSCLC)
Presenter: Kirsty Lee
Session: e-Poster Display Session
368P - Real-world characteristics, treatment, and outcomes of stage III non-small cell lung cancer in Japan: SOLUTION study
Presenter: Haruyasu Murakami
Session: e-Poster Display Session
369P - The surgical perspective in neoadjuvant immunotherapy for resectable non-small cell lung cancer
Presenter: Long Jiang
Session: e-Poster Display Session
371P - Real-world insights into treatment patterns and outcomes in stage III non-small cell lung cancer (NSCLC): KINDLE study India analysis
Presenter: Kumar Prabhash
Session: e-Poster Display Session