Abstract 309P
Background
The American College of radiology proposed BI-RADS lexicon lacks defined rules which direct conversion of specific imaging features into a diagnostic category, results in a discrepancy of reporting. This study compares results from multilayer Perceptron neural network and a classification tree.
Methods
A total of 316 lesions with successive histological verification (221 malignant, 95 benign) were investigated. Six lesion criteria's were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. Simultaneously a multilayer Perceptron neural network was developed by using SPSS software.
Results
A classification tree incorporating 6 lesion descriptors with a depth of 4 ramifications (1- ADC values; 2 -root sign; 3- enhancement pattern; 4 - oedema) was calculated. Of all 316 lesions, 38 (40 %) and 212 (95.9 %) could be classified as benign and malignant with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 79.1 %. The multilayer perceptron network segregated the lesions into training and testing sets in a ratio of 7:3. With a hyperbolic tangent activation function, there were six units of hidden layer and the model show a 20% and 17% incorrect predictions in the training in the testing sets. The diagnostic accuracy of malignant and benign lesions was 92% and 52 % in both the training and testing sets. The area under the curve of the ROC was .855. The order of importance of synaptic weights calculated from the model were ADC ( 0.257), Internal enhancement (0.233), ROOT SIGN (0.175), Margins (0.138), Curve type (0.138), edema (0.038) and mass / non mass (0.021).
Conclusions
The classification algorithm correctly classified 95 % malignant lesions with accuracy above 95 %. The neural network model showed good results on internal validation and revealed ADC to be the most significant parameter with the least importance to morphological classification into mass and non-mass lesions. Also, the dynamic contrast curve patterns were more significant than margins.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Rajiv Gandhi Cancer Institute and Research Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
34P - Clinical significance of neoadjuvant dose-dense chemotherapy for II and III stage breast cancer: A meta-analysis of published studies
Presenter: Meng chen Liu
Session: e-Poster Display Session
35P - Pathological response to weekly nabpaclitaxel and carboplatin followed by anthracycline regimen in triple negative breast cancer
Presenter: Goteti Sharat Chandra
Session: e-Poster Display Session
36P - Survival in patients with contralateral breast cancer
Presenter: Sergey Kamishov
Session: e-Poster Display Session
37P - Correlation between haematological toxicity with quality of life in breast cancer patients after first-cycle chemotherapy
Presenter: felix Wijovi
Session: e-Poster Display Session
38P - Evaluation of the prognostic value of innate immunity-related biomarkers in early breast cancer (BC)
Presenter: Veronica Martini
Session: e-Poster Display Session
39P - CSF-1R inhibitor (C019199) enhances antitumor effect in combination with anti-PD-1 therapy on murine breast cancer models
Presenter: Jiani Zheng
Session: e-Poster Display Session
40P - Molecular subtypes and imaging phenotypes of breast cancer: MRI
Presenter: Yulduz Khatamovna
Session: e-Poster Display Session
41P - Mir-223 overexpression is associated with increased expression of EGFR and worse prognosis in Indonesian TNBC patients
Presenter: Ibnu Purwanto
Session: e-Poster Display Session
42P - Impact of germline mutations on breast cancer prognosis in Kazakh population
Presenter: Dilyara Kaidarova
Session: e-Poster Display Session
50P - Efficacy and safety analysis of pyrotinib in lapatinib resistant HER2-positive metastatic breast cancer: A retrospective study
Presenter: Yijia Hua
Session: e-Poster Display Session