Abstract 309P
Background
The American College of radiology proposed BI-RADS lexicon lacks defined rules which direct conversion of specific imaging features into a diagnostic category, results in a discrepancy of reporting. This study compares results from multilayer Perceptron neural network and a classification tree.
Methods
A total of 316 lesions with successive histological verification (221 malignant, 95 benign) were investigated. Six lesion criteria's were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. Simultaneously a multilayer Perceptron neural network was developed by using SPSS software.
Results
A classification tree incorporating 6 lesion descriptors with a depth of 4 ramifications (1- ADC values; 2 -root sign; 3- enhancement pattern; 4 - oedema) was calculated. Of all 316 lesions, 38 (40 %) and 212 (95.9 %) could be classified as benign and malignant with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 79.1 %. The multilayer perceptron network segregated the lesions into training and testing sets in a ratio of 7:3. With a hyperbolic tangent activation function, there were six units of hidden layer and the model show a 20% and 17% incorrect predictions in the training in the testing sets. The diagnostic accuracy of malignant and benign lesions was 92% and 52 % in both the training and testing sets. The area under the curve of the ROC was .855. The order of importance of synaptic weights calculated from the model were ADC ( 0.257), Internal enhancement (0.233), ROOT SIGN (0.175), Margins (0.138), Curve type (0.138), edema (0.038) and mass / non mass (0.021).
Conclusions
The classification algorithm correctly classified 95 % malignant lesions with accuracy above 95 %. The neural network model showed good results on internal validation and revealed ADC to be the most significant parameter with the least importance to morphological classification into mass and non-mass lesions. Also, the dynamic contrast curve patterns were more significant than margins.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Rajiv Gandhi Cancer Institute and Research Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
420TiP - UpSwinG: Real-world study of TKI activity in patients with EGFR mutation-positive (EGFRm+) NSCLC with uncommon mutations, and sequencing of afatinib followed by osimertinib
Presenter: Satoru Miura
Session: e-Poster Display Session
443TiP - A multicenter, open-label, randomized phase II study to compare the efficacy and safety of lenvatinib in combination with ifosfamide and etoposide versus ifosfamide and etoposide in children, adolescents, and young adults with relapsed or refractory osteosarcoma (OLIE; ITCC-082)
Presenter: Nathalie Gaspar
Session: e-Poster Display Session
7P - Machine learning intratumoral and axillary lymph node magnetic resonance imaging radiomics for predicting axillary lymph node metastasis in patients with early-stage invasive breast cancer (RBC-01 Study)
Presenter: Yujie Tan
Session: e-Poster Display Session
8P - Knowledge, practice and attitudes of physicians in low- and middle-income countries (LMIC) on fertility and pregnancy-related issues in young breast cancer patients
Presenter: Shah Zeb Khan
Session: e-Poster Display Session
9P - Survival status of elderly women with HR+ early breast cancer: An analysis of SEER database
Presenter: Wang Hao
Session: e-Poster Display Session
10P - Neoadjuvant immunotherapy plus chemotherapy in early triple-negative breast cancer: A meta-analysis of randomized controlled trials
Presenter: Jessa Gilda Pandy
Session: e-Poster Display Session
11P - Genetically predicted bipolar disorder is causally associated with increased risk of breast cancer: A Mendelian randomization analysis
Presenter: Haoxin Peng
Session: e-Poster Display Session
12P - Stromal tumour-infiltrating lymphocytes in human epidermal growth factor receptor 2-overexpressing breast cancer: Association with negative nodal metastasis
Presenter: Ren Xiaoqiu
Session: e-Poster Display Session
13P - A retrospective observational study on neoadjuvant chemotherapy in older adults based on the Joint Breast Cancer Registry Singapore
Presenter: Johan Chan
Session: e-Poster Display Session