Abstract 184P
Background
The benefit of adjuvant chemotherapy varies widely among patients with stage II/III gastric cancer (GC), and tools predicting outcomes for this patient subset are lacking. We aimed to develop and validate a nomogram to predict recurrence-free survival (RFS) and the benefits of adjuvant chemotherapy after radical resection in patients with stage II/III GC.
Methods
Data on patients with stage II/III GC who underwent R0 resection from January 2010 to August 2014 at Fujian Medical University Union Hospital (FMUUH) (n=1240; training cohort) were analyzed by Cox regression to identify independent prognostic factors for RFS. A nomogram including these factors was internally and externally validated in FMUUH (n=306) and a US cohort (n=111), respectively.
Results
The multivariable analysis identified age, differentiation, tumor size, number of examined lymph nodes, pT stage, pN stage, and adjuvant chemotherapy as associated with RFS. A nomogram including the above 7 factors was significantly more accurate in predicting RFS compared with the 8th AJCC-TNM staging system for patients in the training cohort. The risk of peritoneal metastasis was higher and survival after recurrence was significantly worse among patients calculated by the nomogram to be at high risk than those at low risk. The nomogram’s predictive performance was confirmed in both the internal and external validation cohorts.
Conclusions
A novel nomogram is available as a web-based tool and accurately predicts long-term RFS for GC after radical resection. The tool can also be used to determine the benefit of adjuvant chemotherapy by comparing scores with and without this intervention.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Scientific and Technological Innovation Joint Capital Projects of Fujian Province.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
360P - Number of lymph nodes examined was not an independent risk factor for the survival of patients with stage IA1-2 lung adenocarcinoma undergoing sublobar resection
Presenter: Zhenbin Qiu
Session: e-Poster Display Session
361P - Radiomic model predicting radiological response after thoracic stereotactic body radiotherapy regardless of tumor histology and staging
Presenter: Ben Man Fei Cheung
Session: e-Poster Display Session
362P - Integrative and comparative genomic analysis and immune microenvironment features of lung cancer patients with tuberculosis
Presenter: Xiaoling Xu
Session: e-Poster Display Session
363P - Genetic predisposition for pre-invasive lung adenocarcinoma manifesting as ground-glass nodules with family history of lung cancer
Presenter: Rui Fu
Session: e-Poster Display Session
364P - A deep learning model for the classification of lung cancer
Presenter: Gouji Toyokawa
Session: e-Poster Display Session
365P - Utilization of on-site pathology evaluation for lung cancer diagnosis in the Philippines’ National University Hospital
Presenter: Rich Ericson King
Session: e-Poster Display Session
367P - Detection of epidermal growth factor receptor mutations (EGFR-mut) from cell-free DNA in pleural effusion (PE-DNA) of patients with non-small cell lung cancer (NSCLC)
Presenter: Kirsty Lee
Session: e-Poster Display Session
368P - Real-world characteristics, treatment, and outcomes of stage III non-small cell lung cancer in Japan: SOLUTION study
Presenter: Haruyasu Murakami
Session: e-Poster Display Session
369P - The surgical perspective in neoadjuvant immunotherapy for resectable non-small cell lung cancer
Presenter: Long Jiang
Session: e-Poster Display Session
371P - Real-world insights into treatment patterns and outcomes in stage III non-small cell lung cancer (NSCLC): KINDLE study India analysis
Presenter: Kumar Prabhash
Session: e-Poster Display Session