Abstract 410P
Background
Cell-free DNA (cfDNA) fragmentation patterns hold immense potential for early cancer detection. However, the lack of systematic comparison among these patterns has impeded their broader research and practical implementation.
Methods
Here, we collected over 1,382 plasma cfDNA sequencing samples from diverse sources, covering eight cancer types including breast cancer, cholangiocarcinoma, colorectal cancer, gastric cancer, lung cancer, ovarian cancer, pancreatic cancer, and liver cancer. Considering that cfDNA within open chromatin regions is more susceptible to fragmentation, we leveraged ten fragmentation patterns within open chromatin regions as features and employed machine learning techniques to evaluate their performance. The considered fragmentation patterns included Windowed Protection Score, Preferred end coordinates, Coverage, Orientation-aware Cell-free Fragmentation, DNA Evaluation of Fragments for early Interception, Fragment Size Ratio, Fragment Size Distribution, End Motif preferences, Promoter Fragmentation Entropy, and Integrated Fragmentation Score.
Results
All fragmentation patterns demonstrated discernible classification capabilities, and the category of fragmentation patterns incorporating both fragment length and coverage information exhibited robust predictive capacities. The ensemble model integrating all these fragmentation patterns further improved performance in cancer detection and tissue-of-origin analysis. Biologically, crucial features of the model captured critical regulatory regions involved in cancer pathogenesis.
Conclusions
A comprehensive machine-learning-based evaluation of ten major cfDNA fragmentation patterns for early cancer detection was performed. Enhanced performance in cancer diagnosis and tissue-of-origin estimation was achieved, through integration of these fragmentation patterns in an ensemble model with biological interpretability.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
623P - Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer
Presenter: Sam Martin
Session: Poster Display
Resources:
Abstract
624P - Pan-cancer single-cell isoform atlas: Unraveling isoform dynamics in cancer immunotherapy
Presenter: Lu Pan
Session: Poster Display
Resources:
Abstract
625P - The association of tumor marker concentration and air pollution in cancer survivors and the general population
Presenter: Kyae Hyung Kim
Session: Poster Display
Resources:
Abstract
626P - Percentage of cancer patients undergoing adjusted targeted therapy after ctDNA testing: Insights from a tertiary hospital experience
Presenter: Jisook Yim
Session: Poster Display
Resources:
Abstract
627P - Racial disparities in synchronous and metachronous colorectal and prostate cancer: SEER based study 2000-2020
Presenter: Taha Nagib
Session: Poster Display
Resources:
Abstract