Abstract 410P
Background
Cell-free DNA (cfDNA) fragmentation patterns hold immense potential for early cancer detection. However, the lack of systematic comparison among these patterns has impeded their broader research and practical implementation.
Methods
Here, we collected over 1,382 plasma cfDNA sequencing samples from diverse sources, covering eight cancer types including breast cancer, cholangiocarcinoma, colorectal cancer, gastric cancer, lung cancer, ovarian cancer, pancreatic cancer, and liver cancer. Considering that cfDNA within open chromatin regions is more susceptible to fragmentation, we leveraged ten fragmentation patterns within open chromatin regions as features and employed machine learning techniques to evaluate their performance. The considered fragmentation patterns included Windowed Protection Score, Preferred end coordinates, Coverage, Orientation-aware Cell-free Fragmentation, DNA Evaluation of Fragments for early Interception, Fragment Size Ratio, Fragment Size Distribution, End Motif preferences, Promoter Fragmentation Entropy, and Integrated Fragmentation Score.
Results
All fragmentation patterns demonstrated discernible classification capabilities, and the category of fragmentation patterns incorporating both fragment length and coverage information exhibited robust predictive capacities. The ensemble model integrating all these fragmentation patterns further improved performance in cancer detection and tissue-of-origin analysis. Biologically, crucial features of the model captured critical regulatory regions involved in cancer pathogenesis.
Conclusions
A comprehensive machine-learning-based evaluation of ten major cfDNA fragmentation patterns for early cancer detection was performed. Enhanced performance in cancer diagnosis and tissue-of-origin estimation was achieved, through integration of these fragmentation patterns in an ensemble model with biological interpretability.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
529P - Ramucirumab plus docetaxel after combination chemoimmunotherapy in patients with non-small cell lung cancer: A prospective observational study
Presenter: Tadaaki Yamada
Session: Poster Display
Resources:
Abstract
530P - MYC recruits tumor-associated macrophage to sustain metastatic malignancy of lung adenocarcinoma micropapillary subtype through epigenetic reprogramming
Presenter: Xuming Song
Session: Poster Display
Resources:
Abstract
531P - Effect of combinational targeted therapy for AXL and ATR against malignant mesothelioma cells
Presenter: Soichi Hirai
Session: Poster Display
Resources:
Abstract
532P - The changes of the serum SMRP levels is useful to predict the antitumor efficacy of ipilimumab plus nivolumab combination therapy in patients with malignant pleural mesothelioma
Presenter: Taiichiro Otsuki
Session: Poster Display
Resources:
Abstract
533P - Efficacy in the elderly NSCLC patients in SCORPION study: Phase II study of DTX plus RAM following platinum-based chemotherapy plus ICIs
Presenter: Teppei Yamaguchi
Session: Poster Display
Resources:
Abstract
534P - DSC2 promotes the proliferation, metastasis and drug resistance of lung cancer by activating the PI3K/AKT pathway
Presenter: Qi Li
Session: Poster Display
Resources:
Abstract
535P - Alteration in NKX2-1 CN reshapes the oncogenic, immunologic, and prognostic landscapes in NSCLC
Presenter: Herdee Gloriane Luna
Session: Poster Display
Resources:
Abstract
536P - The evaluation and long-term outcome of pulmonary metastasectomy for osteosarcoma: A 20-year experience of Shanghai Rujin Hospital
Presenter: Zhusheng Zhang
Session: Poster Display
Resources:
Abstract
537P - The impact of treatment-free interval on patient outcome after pulmonary metastasectomy for sarcoma
Presenter: Po-Kuei Hsu
Session: Poster Display
Resources:
Abstract
538P - First-line chemoimmunotherapy for metastatic thymic carcinoma
Presenter: Victoria Andreas
Session: Poster Display
Resources:
Abstract